Course detail
Machining Technology
FSI-DTBAcad. year: 2022/2023
The course deals with the following topics: Fundamentals of machining. Dimensioning and tolerances. Physics of machining. Cutting forces, heat and temperature of cutting. Cutting materials and their use. Productivity and economy of machining. Wear of cutting tools. Main groups of machines and technologies. Technology of turning, drilling and milling. Shaping, grinding, honing and reaming. Non-conventional methods of machining (EDM, laser, plasma assisted machining, ultrasonic, water jet). Gear production. CNC machining. Rapid prototyping, 3D print. Tolerance and dimension chains. Selective assembly.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Successful completion of two knowledge tests on the subject.
Successful defence of their written works, protocols or technical reports.
Recommended optional programme components
Prerequisites and corequisites
Basic literature
De Vos, P.., STAHL, J.-E. Aplikovaná fyzika v obrábění kovů - praktické zkušenosti. Fagersta. Seco Tools AB. 2016 (CS)
KOCMAN, K., PROKOP, J. Technologie obrábění. 2. vyd.. CERM, s.r.o., Brno, 1996. ISBN 80-214-1996-2. (CS)
SHAW, M.C. Metal Cutting Principles. Oxford University Press, 2nd ed., 2005, ISBN 0-19-514206-3 (EN)
TLUSTY, J. Manufacturing Process and Equipment. Prentice Hall, 1999. ISBN 10-0201498650. (EN)
Walker, J.R.: Machining Fundamentals. The Goodheart-Wilcox Company, Inc., 7th ed., pp. 640, 2007, ISBN 1-59070-249-2 (EN)
Recommended reading
SHAW, M. C. Metal Cutting Principles. Oxford University Press, 2nd ed., 2005, pp. 651, ISBN 0-19-514206-3. (EN)
TLUSTY, J. Manufacturing Process and Equipment. 1st edition. Prentice Hall, 1999. 928 s. ISBN 10-0201498650. (EN)
Elearning
Classification of course in study plans
- Programme B-STR-P Bachelor's
specialization AIŘ , 2 year of study, summer semester, compulsory
specialization STG , 2 year of study, summer semester, compulsory - Programme B-ZSI-P Bachelor's
specialization STI , 2 year of study, summer semester, compulsory
- Programme B-STR-P Bachelor's
specialization SSZ , 3 year of study, summer semester, compulsory
specialization KSB , 3 year of study, summer semester, compulsory - Programme LLE Lifelong learning
branch CZV , 1 year of study, summer semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
1. Fundamentals of machining.
2. Physics of cutting, chip formation.
3. Force analysis, heat and temperature when cutting, rezidual stresses and other metal cutting phenomena.
4. Tool materials for cutting. HSS, cemented carbides, ceramics, diamond, etc. CVD, MTCVD and PVD coatings.
5. Turning. Turning of outer and inner surfaces.
6. Milling. Face and shoulder milling,grooving, copying, special operations.
7. Drilling and boring, reaming.
8. Finishing technologies. Non-conventional methods of machining.
9. Machine tools for automatic production.CNC machining.
10. Economics of machining. Productivity, costs.
11. Gear production. Machine tools. Rapid prototyping.
12. Special technologies - HSM/HSC/HFM.
13. Fundamentals of technology and assembly managements.
Laboratory exercise
Teacher / Lecturer
Syllabus
2. Calculations.
3. Metal cutting phenomena.
4. Tool materials for cutting.
5. Productivity and economics of machining.
6. Machine tools.
7. Turning.
8. Drilling and boring.
9. Milling.
10. Grinding and other finishing methods.
11. Machine tools for automatic production.
12. NC/CNC machining. Sinumerik 810D.
13. Gear production. Non-conventional methods of machining.
Elearning