Course detail

Fluid Structure Interactions

FSI-RITAcad. year: 2022/2023

The course familiarises students with the impact of different physical fields on moving stiff and elastic bodies (e.g. impact of liquid in journal bearings and sealing gaps on rotor dynamics, impact of gravitational and electromagnetic fields on rotor stability).
Generally, the effect of these fields on vibrating body is investigated.

Language of instruction

Czech

Number of ECTS credits

3

Mode of study

Not applicable.

Learning outcomes of the course unit

Students will have an over view of the effects of different types of surrounding with respect to the machine and device dynamics.

Prerequisites

Basics of hydrodynamics, thermomechanics and the body dynamics.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.

Assesment methods and criteria linked to learning outcomes

Course-unit grade credit

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The aim of the course is to acquaint the students with various force fields that have impacts on solid and elastic body. Also dealt with are the effects on the mechanical system characteristics. Another goal is to develop students´ creative thinking with respect to systematic conception of mechanics.

Specification of controlled education, way of implementation and compensation for absences

Attendance at seminars and written tasks in the seminars.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

AXISA, François a Jose ANTUNES. Modelling of mechanical systems. Amsterdam: Elsevier Butterworth-Heinemann, 2007. ISBN 0-7506-6847-4.
BIRD, R. Byron, Warren E. STEWART a Edwin N. LIGHTFOOT. Přenosové jevy: sdílení hybnosti, energie a hmoty. Přeložil Štefan ŠALAMON, přeložil Vladimír MÍKA. Praha: Academia, 1968.
BRDIČKA, Miroslav, Ladislav SAMEK a Bruno SOPKO. Mechanika kontinua. Vyd. 2., opr. Praha: Academia, 2000. ISBN 8020007725.
BRDIČKA, Miroslav: Mechanika tekutin.
PAIDOUSSIS, M. P: Fluid - structure interactions: Slender structures and axial flow. Volume 2, Elsevier Ltd. 2004, ISBN 0-12-544361-7.
PIVOŇKA, Josef. Tekutinové mechanismy. Praha: SNTL, 1987.

Recommended reading

ŠOB, František. Hydromechanika. Vyd. 2. Brno: Akademické nakladatelství CERM, 2008. ISBN 978-80-214-3578-0.

Elearning

Classification of course in study plans

  • Programme N-IMB-P Master's

    specialization IME , 1 year of study, summer semester, compulsory
    specialization BIO , 1 year of study, summer semester, compulsory

  • Programme LLE Lifelong learning

    branch CZV , 1 year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

Conception of macroscopic element. The Euler and Lagrange continuum theory. The motion equation of macroscopic element. The weight conservation law of macroscopic element. The additional effect of the liquid on the body. The magnetic field impact on the body. The through flow pipeline stability. The round flow body stability.

Exercise

13 hod., compulsory

Teacher / Lecturer

Syllabus

The Buckingham II - theorem - the numbers of similarity. The Karman vortex effect on the constructions. Additional mass of various body - calculation methods. The through flow pipeline stability, the stability criteria. The pressure pulsation in a pipeline system, stiffness and inner damping effects of the pipe on the pressure pulsation amplitude. The fluid additive effect applications on the vertical pump.

Elearning