Course detail
General Physics II (Electricity and Magnetism)
FSI-TF2Acad. year: 2022/2023
The course gives an explanation for classical electromagnetism. The description of electrostatic field is based on the Coulomb interaction. The description of magnetism, electromagnetic induction and temporally variable fields is based on the description of basic experiments towards the formulation of the Maxwell equations and towards the description of the electromagnetic wave in a vacuum. The field of stationary and quasistationary flux in a conductor is assumed in the electric circuits for the solution of which the Kirchhoff laws are formulated. The properties of conductors, dielectrics and magnetics are described with respect to understanding of effects in the materials and of significance of materials constants. Topics of lectures correspond to the extent of university basic-course textbooks.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
E. M. Purcell, D. J. Morin: Electricity and Magnetism. 3rd edition, Cambridge University Press 2013 (EN)
HALLIDAY, D. - RESNICK, R. - WALKER, J.: Fyzika. VUTIUM, Brno 2001
SEDLÁK, B., ŠTOLL, I.: Elektřina a magnetismus. Academia Praha, 1993
Recommended reading
D. J. Griffiths: Introduction to Electrodynamics.Addison-Wesley, 2012.
E. M. Purcell, D. J. Morin: Electricity and Magnetism. 3rd edition, Cambridge University Press 2013 (EN)
HALLIDAY, D. - RESNICK, R. - WALKER, J.: Fyzika (2. vydání). VUTIUM, Brno 2013 (CS)
ŠANTAVÝ, I., LIŠKA, M.: Elektromagnetismus. Skriptum VUT v Brně. Elektronická verze: http://physics.fme.vutbr.cz
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Intensity of electrostatic field.
The Gauss’ law.
Potential of electrostatic field.
Capacity and capacitors. Dielectrics.
Electric conductivity and the Ohm’s law. The Kirchhof’s laws and solution of electric circuits.
Impact of the magnetic field on the charged particle and on the conductor with the flux.
The Ampére’s law. The Biot-Savart’s law.
Magnetic field in substances.
Electromagnetic induction. Induction.
Oscillation in RLC circuit.
The Maxwell equations.
Electromagnetic waves.
Electromagnetic waves.
Exercise
Teacher / Lecturer
Syllabus
Elearning