Přístupnostní navigace
E-application
Search Search Close
Course detail
FSI-9NM2Acad. year: 2022/2023
The course deals with the numerical solution of differential equations. First initial-value problems are studied (Runge-Kutta methods, linear multistep methods (especially Adams methods and backward differentiation methods), solution of stiff problems). Next solution methods for boundary value problems are introduced (the finite difference method, the control volume method and the finite element methods). The principles of those methods are explained for 1D second order boudary value problem. Main emphasis is placed on the finite element method in two dimensions. The following model problems are studied: elliptic (stationary heat transfer), parabolic (nonstationary heat transfer) and hyperbolic (membrane vibration including eigenproblems).
Language of instruction
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Lecture
Teacher / Lecturer
Syllabus