Course detail

Special Technology of Machining

FSI-HO1-KAcad. year: 2022/2023

The content of the course is mainly focused on automation and optimization of technological processes and applies knowledge from the scientific disciplines of physics and mathematics in the implementation, improvement and use of production processes. Introduces students to the theory of production processes, the theory of dimensional circuits with a focus on assembly of machinery, the application of linear algebra to optimize production processes, the analysis of statistical phenomena and probabilities in cutting theory, basic knowledge in creating programs for CNC machines and applications CAD/CAM in TPV, with environmental aspects of engineering production, cutting materials, HSC machining and the theory of energy cutting problems. Furthermore, the content of the course is focused on the methods of industrial engineering in the field of theory and analysis of operations as a necessary prerequisite for mastering technical and economic problems of all types of production.

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

The students will obtain theoretical fundamentals of a machining technology with the use of numeric control machine tools, they will learn basic methods of programming of these tools, and will be acquainted with economic aspects of technological disciplines.

Prerequisites

The fundamentals of the metal cutting theory, probability theory, differential and integral calculus, determinants, dynamic of the mass point, mechanical work and energy, molecular physics and thermodynamics

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Teaching is suplemented by practical laboratory work.

Assesment methods and criteria linked to learning outcomes

Credit requirements include an active participation in all exercises, completing all tasks in the laboratory exercises, and delivery of all required written work. In well-founded cases the teacher can set further conditions as a compensation. The examination tests the knowledge and, in particular, the ability to apply the knowledge independently in solving assigned tasks. The examination consists of a written (test or written exam) and oral part. If the student fails to apply the knowledge in practice, the examination will be graded as unsatisfactory.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The aim of the course is to familiarise students with automation of a short-run and single-part production focusing on an application of numeric cntrol machine tools including technical production planning.

Specification of controlled education, way of implementation and compensation for absences

Students work is systematically controlled in a form of short written tests, individual compensatory assignments and result check.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

AB SANDVIK COROMANT – SANDVIK CZ, s.r.o. Příručka obrábění-kniha pro praktiky. Přel. KUDELA, M. Praha: Scientia, s.r.o., 1997. 857 s. Přel. z: Modern Metal Cutting – A Practical Handbook. ISBN 91-97 22 99-4-6. (CS)
CHUA, C. K., LEONG, K. F., LIM, C. S. Rapid Prototyping: Principles and Applications. 3rd ed. New Jersey: World Scientific, c2010, 512 pp. ISBN 978-981-277-897-0. (EN)
KOCMAN, K. a kolektiv. Aktuální příručka pro technický úsek. 15. ed. Edit. S. Hanzlík, Praha, Verlag Dashöfer, 2000 3950 s. ISBN 80-902247-2-5. (CS)
KOCMAN, K., PROKOP, J. Technologie obrábění. 2. vyd. Brno: Akademické nakladatelství CERM, s.r.o., 2005. 270 s. ISBN 80-214-3068-0. (CS)
KOCMAN, K. Speciální technologie obrábění. 3. ed. Brno: AKADEMICKÉ NAKLADATELSTVÍ CERM, s.r.o., 2004. 227 s. ISBN 80-214-2562-8. (CS)
PÍŠKA, M. a kolektiv. Speciální technologie obrábění. 1. vyd. Brno: AKADEMICKÉ NAKLADATELSTVÍ CERM, s.r.o., 2009. 246 s. ISBN 978-80-214-4025-8. (CS)
RAJA, V., FERNANDES, K. J. Reverse Engineering: An Industrial Perspective. Series: Springer Series in Advanced Manufacturing. 2008, XVIII, 242 pp. 135 illus. ISBN 978-1-84628-856-2. (EN)
SHAW, M. C. Metal Cutting Principles. 2nd ed. Oxford University Press, 2005. 651 pp. ISBN 0-19-514206-3. (EN)

Recommended reading

AB SANDVIK COROMANT – SANDVIK CZ, s.r.o. Příručka obrábění-kniha pro praktiky. Přel. KUDELA, M. Praha: Scientia, s.r.o., 1997. 857 s. Přel. z: Modern Metal Cutting – A Practical Handbook. ISBN 91-97 22 99-4-6. (CS)
CHUA, C. K., LEONG, K. F., LIM, C. S. Rapid Prototyping: Principles and Applications. 3rd ed. New Jersey: World Scientific, c2010, 512 pp. ISBN 978-981-277-897-0. (EN)
KOCMAN, K. a kolektiv. Aktuální příručka pro technický úsek. 15. ed. Edit. S. Hanzlík, Praha, Verlag Dashöfer, 2000 3950 s. ISBN 80-902247-2-5. (CS)
KOCMAN, K., PROKOP, J. Technologie obrábění. 2. vyd. Brno: Akademické nakladatelství CERM, s.r.o., 2005. 270 s. ISBN 80-214-3068-0. (CS)
KOCMAN, K. Speciální technologie obrábění. 3. ed. Brno: AKADEMICKÉ NAKLADATELSTVÍ CERM, s.r.o., 2004. 227 s. ISBN 80-214-2562-8. (CS)
PÍŠKA, M. a kolektiv. Speciální technologie obrábění. 1. vyd. Brno: AKADEMICKÉ NAKLADATELSTVÍ CERM, s.r.o., 2009. 246 s. ISBN 978-80-214-4025-8. (CS)
RAJA, V., FERNANDES, K. J. Reverse Engineering: An Industrial Perspective. Series: Springer Series in Advanced Manufacturing. 2008, XVIII, 242 pp. 135 illus. ISBN 978-1-84628-856-2. (EN)
SHAW, M. C. Metal Cutting Principles. 2nd ed. Oxford University Press, 2005. 651 pp. ISBN 0-19-514206-3. (EN)

Elearning

Classification of course in study plans

  • Programme N-STG-K Master's

    specialization STM , 2 year of study, winter semester, compulsory
    specialization MTS , 2 year of study, winter semester, compulsory
    specialization STG , 2 year of study, winter semester, compulsory

Type of course unit

 

Guided consultation in combined form of studies

13 hod., compulsory

Teacher / Lecturer

Syllabus

High-precision machining, calculation or dimension inspection.
Application of new and advanced progressive technologies.
Machining of heavy-duty, modern or prospective technical materials.
Basic concepts of linear programming, Simplex method.
LP application for selection of cutting conditions.
Selection of cutting conditions using conventional optimization methods.
Automation of the manufacturing process in small-scale production, basics of CNC technology.
HSC, HFM, HPM technology.
Machining shape-size or dimensionally extreme components.
Production of gears.
Application of modern technologies, processing of measured data and their possible use.
Micromachining.
Manufacturing Technologies of composite materials.
Use of additive technology – 3D printing technology, reverse engineering technology.
Rapid production of molds in the foundry.
Study of materials made by classical and modern additive laser technology of powder metallurgy. Prototype knee implant production technology with specific requirements for shape and function surfaces.

Laboratory exercise

13 hod., compulsory

Teacher / Lecturer

Syllabus

Dimensional chains in production - Calculation for complete interchangeability.
Machining Accuracy - Probability Application.
Thermal balance of the cutting process.
Fundamentals of ISO code. Programming CNC milling machine or lathe.
Conventional optimization of cutting conditions.
Linear programming - Simplex method.
Applications of linear programming.
Production technology of gearing.
Application of advanced Rapid Prototyping technologies.

Guided consultation

52 hod., optionally

Teacher / Lecturer

Syllabus

High-precision machining, calculation or dimension inspection.
Application of new and advanced progressive technologies.
Machining of heavy-duty, modern or prospective technical materials.
Basic concepts of linear programming, Simplex method.
LP application for selection of cutting conditions.
Selection of cutting conditions using conventional optimization methods.
Automation of the manufacturing process in small-scale production, basics of CNC technology.
HSC, HFM, HPM technology.
Machining shape-size or dimensionally extreme components.
Production of gears.
Application of modern technologies, processing of measured data and their possible use.
Micromachining.
Manufacturing Technologies of composite materials.
Use of additive technology – 3D printing technology, reverse engineering technology.
Rapid production of molds in the foundry.
Study of materials made by classical and modern additive laser technology of powder metallurgy. Prototype knee implant production technology with specific requirements for shape and function surfaces.

Elearning