Course detail
Mechanisation and Automation
FSI-EMM-KAcad. year: 2022/2023
The introduction to the subject will be the historical development of automation, further continues with modern computer control integrated production (CIM) and their subgroups (CAD, CAPE, CAPP, CAE, CAM, CAQ). It will be explained the need for automation in terms of aspects forced, economically justified and different. After, robots and manipulators and Automated technological workplaces, Automated workplaces for machining, forming and welding will be discussed. In the next part, the subject is focused on Integrated Production Grouping (IPG), Automated Production Systems (APS), Flexible Production Systems (FPS) and Flexible Production Cells. In the following, the design features of NC machine tools will be addressed. Expert systems are characterized in the subject. The basic means of automation and artificial intelligence in flexible automation will also be discussed. Boolean algebra and sensor characteristics are also part of the subject. The subject also deals with automated exchange of tools and workpieces.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Students will acquire necessary knowledge of mechanization and automation and handling systems in engineering automation workshops and production control. They will be received the basics and principles of numerical control, industrial robots and NC and CNC machines as well. The obtained knowledge will be applied in the field of the processing all types technological production designs.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Participation in lessons is controlled by solving the partial projects submitted in the form of protocols. The subject-unit credit is done by examining the participation in the course and the projects evaluation. The exam consists of the written test and the oral part.
Recommended optional programme components
Prerequisites and corequisites
Basic literature
J.T.BLACK: The Design of the Factory with a future, , 0
Rumíšek,P.: Automatizace výrobních procesů II, Brno 1990,VUT, učební texty
Recommended reading
Hlavenka,B.: Manipulace s materiálem (systémy a prostředky manipulace s materiálem), Brno,1983, VUT - učební texty
Kamelander,I.: Mechanizace a automatizace výrobních strojů, Brno 1987, VUT, učební texty
Rumíšek, P.: Technologické projekty, Brno, 1991, VUT - učební texty
Elearning
Classification of course in study plans
Type of course unit
Guided consultation in combined form of studies
Teacher / Lecturer
Syllabus
- Introduction and history of mechanization and automation, CIM, CAD, CAPE, CAPP, CAE, CAM, CAQ – modern production control
- Automated workplaces for machining, forming and welding
- Robotized workplaces and flexible production cells, flexible production systems
- Robots and manipulators – their structure and function
- Machine tools – requirements, systematic classification, division and design features of NC production machines
- Production systems for machining, CNC turning and milling machines, multifunctional machining centers, control of automated production
- Expert systems - types, construction, properties and uses
- Production process, basic means of automation, artificial intelligence in flexible automation
- Boolean algebra, types of sensors
- Automatic workpiece change
- Automatic tool change
- Analysis of the conditions of use of industrial robots and manipulators, warheads, effectors, interactions with surroundings
- Automated production systems and complex handling
Guided consultation
Teacher / Lecturer
Syllabus
- Protocol entry Material handling in the warehouse with the robot
- Determination and dimensioning of the warehouse according to demand
- Warehouse workplace design
- Choice of portal robot in warehouse
- Protocol submission
- Introduction to software Kauza-X for evaluation of automation and mechanization
- Working with the expert system Kauza-X (conveyors, chutes)
- Theoretical calculation of line operation costs and its comparison with the inference system of expert system
- Working with the expert system Kauza-X (carts, conveyors and manipulators)
- Design of a flexible production line
- Choice and characteristics of the robot
- Protocol submission
- Evaluation of protocols and participation, granting of credit
Elearning