Course detail

Mathematics and Geometry

FA-MAG-NAcad. year: 2023/2024

The course reacts to the students´ needs on how to apply mathematics in technical problems and how to graphically render the buildings in building construction and architecture. The lectures provide information on different ways of solving problems and current trends, including using computer technology. In the seminars, students work individually and apply the skills on particular assignments.

Language of instruction

Czech

Number of ECTS credits

2

Mode of study

Not applicable.

Department

Department of Engineering (US)

Entry knowledge

Not applicable.

Rules for evaluation and completion of the course

Students will sit in-semester tests and submit assignments which form 40 % of the assessment. The end-of semester test forms 60 % of the assessment.
The attendance at the practical classes is mandatory, the absences cannot be compensated, only excused for serious reasons.
In the case of a student's apology and with approval of the subject guarantor, personal attendance may be substituted with online attendance in the classes.

Aims

The aim of the course is to understand the principles of mathematics and to apply them in the solution of practical problems. Another aim is to deepen the spatial imagination, ability to graphically express their ideas, and to develop materials for project design.
– Students will understand basic mathematical methods of mathematical analysis, linear algebra, and descriptive geometry.
– Students will know how to use mathematical methods when solving practical problems.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

KARGEROVÁ, Marie. Deskriptivní geometrie pro technické školy vysoké, vyšší a střední. Ostrava: Montanex, 1997. ISBN: 80-857780-68-2. (CS)
RÁDL, P. -- ČERNÁ, B. -- STARÁ, L. Základy vyšší matematiky. 3. vyd. Mendelova univerzita v Brně, 2014. 176 s. ISBN 978-80-7509-110-9. (CS)

Recommended reading

ČERNÁ, B. Matematika - lineární algebra. 4. vyd. Brno: Mendelova zemědělská a lesnická univerzita v Brně, 2007. 129 s. ISBN 978-80-7375-080-0. (CS)
ZEMÁNEK, P. -- HASIL, P. Sbírka řešených příkladů z matematické analýzy I. Brno: Masarykova univerzita, 2012. 527 s. Elportál (ISSN 1802-128X), 3. vydání. ISBN 978-80-210-5882-8. (CS)

Elearning

Classification of course in study plans

  • Programme B_A+U Bachelor's 1 year of study, winter semester, compulsory
    specialization --- (do 2022) , 1 year of study, winter semester, compulsory

Type of course unit

 

Lecture

22 hod., optionally

Teacher / Lecturer

Syllabus

  1. Lecture + practical: Introduction to mathematical analysis. Function, characteristics of functions
  2. Lecture + practical: Limits of a function. Derivative of a function
  3. Lecture + practical: The use of the derivative and the behaviour of a function
  4. Lecture + practical: Integral calculus
  5. Lecture + practical: Linear
  6. Lecture: Introduction to graphical projections. Primary orthographic projection (Monge)
    Practical: Primary orthographic projection (planar dimensioned)
  7. Practical: Primary orthographic projection (Monge)
  8. Lecture + practical: Axonometry
  9. Practical: Axonometry
  10. Lecture + practical: Linear perspective
  11. Lecture: Curves
    Practical: Linear perspective
  12. Lecture + practical: Free form curves
  13. Lecture: Surfaces
    Practical: Ruled surface and recapitulation

Elearning