Course detail

Introduction to Computational Fluid Dynamics

FSI-MMPAcad. year: 2023/2024

Subject introduces students with capabilities of computational simulations of fluid flow and presents philosophy of work in CFD environment. Emphasis is put on preprocessing, i.e. 3D geometrical modeling and computational grid creation process. Students are also taught the formulation of the computational case and basics of postprocessing. This subject will be followed on by course Computational fluid dynamics . Practical exercises are focused on work with Solidworks and ANSYS CFD.

Language of instruction

Czech

Number of ECTS credits

1

Mode of study

Not applicable.

Entry knowledge

Fluid mechanics, basic CAD skills, work with Windows operating system.

Rules for evaluation and completion of the course

Final evalutation is based on project work, which is summarized in form of technical report.
Exercises are compulsory. Absences in exceptional cases are individually judged by teacher.

Aims

Introduction to geometrical modeling and computational fluid dynamics, introduction to work with ANSYS CFD.
Basics of work with ANSYS CFD and Solidworks, coupling between 3D modeling and CFD analysis.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

ANSYS Design Modeler User Guide. Dostupné z : http://www.ansys.com (EN)
ANSYS Fluent User Guide. Dostupné z : http://www.ansys.com (EN)
ANSYS Mesh User Guide. Dostupné z : http://www.ansys.com (EN)
CENGEL, Y., CIMBALA, J: Fluid Mechanics Fundamentals and Applications, McGraw-Hill, ISBN 978-0-0-07-352926-4 (EN)

Recommended reading

Not applicable.

Elearning

Classification of course in study plans

  • Programme N-ETI-P Master's

    specialization TEP , 1 year of study, winter semester, elective
    specialization ENI , 1 year of study, winter semester, elective
    specialization FLI , 1 year of study, winter semester, elective

Type of course unit

 

Computer-assisted exercise

39 hod., compulsory

Teacher / Lecturer

Syllabus

1. Solidworks – 3D modelling
2. Solidworks – 3D modelling
3. Solidworks – 3D modelling
4. Solidworks – 3D modelling (individual project)
5. ANSYS Workbench, ANSYS DesignModeler –geometry modifications for CFD computations
6. ANSYS DesignModeler - geometry modifications for CFD computations
7. ANSYS Mesh – building computational grids
8. ANSYS Mesh- building computational grids
9. ANSYS Mesh - building computational grids
10. ANSYS Mesh - building computational grids
11. ANSYS Fluent – computational task formulation (basics)
12. ANSYS Fluent - computational task formulation (basics)
13. ANSYS Fluent – postprocessing (basics)

Elearning