Course detail
Fluid Power Modeling
FSI-MTMAcad. year: 2023/2024
The cours deals with the following topics: basic theory, notions and definitions of mathematical modelling of fluid power systems and displacement pumps. It gives an overview of the main simulation tools as well as electro-hydraulic analogy. Energy transfer, efficiency and characteristics are emphasised in the part concerning the displacement pumps.
Seminars include computer simulation and examples from the research applicable in industrial practice.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Entry knowledge
Rules for evaluation and completion of the course
Examination requirements - course-unit credit, knowledge of the subject-matter and and ability to apply it to the given examples. The exam has a written and an oral part.
Attendance at seminars is checked and possible (limited) absence may be compensated for via additional tasks.
Aims
Students will be able to analyse and create a mathematical model of the fluid power system element behaviour or a model of the mechanism as a whole. They will also be able to simulate this behaviour by means of a computer.
Study aids
Prerequisites and corequisites
Basic literature
NEPRAŽ, František, Josef NEVRLÝ, Václav PEŇÁZ a Karel TŘETINA. Modelování systémů s hydraulickými mechanismy. Brno: Bosch Rexroth, 2002. ISBN 80-214-2187-8.
NEVRLÝ, Josef. Modelování pneumatických systémů. Brno: Akademické nakladatelství CERM, 2003. ISBN 80-720-4300-5.
WATTON, John. Fundamentals of fluid power control. New York: Cambridge University Press, 2009. ISBN 05-217-6250-2. (EN)
Recommended reading
NEPRAŽ, František, Josef NEVRLÝ, Václav PEŇÁZ a Karel TŘETINA. Modelování systémů s hydraulickými mechanismy. Brno: Bosch Rexroth, 2002. ISBN 80-214-2187-8.
NEVRLÝ, Josef. Modelování pneumatických systémů. Brno: Akademické nakladatelství CERM, 2003. ISBN 80-720-4300-5.
WATTON, John. Fundamentals of fluid power control. New York: Cambridge University Press, 2009. ISBN 05-217-6250-2. (EN)
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Non-linearities, specific problems
3. Elementary hydrostatic elements modelling
4. Real hydrostatic elements modelling
5. Hydrostatic circuits modelling
6. Simulation programs, DYNAST, MATLAB
7. Simulation programs applications
8. Modelling of pulsations in hydrostatic mechanisms
9. Pneumatic mechanisms modelling - basic concepts
10. Laws of air flowing through tubing
11. Pneumatic mechanisms stationary and dynamic states modelling
12. Basic types of volume pumps
13. Modelling of hydraulic conditions for volume pumps
Laboratory exercise
Teacher / Lecturer
Syllabus
2. Resistance against acceleration computations.
3. Resistance against deformation computations.
4. Pipeline modelling.
5. Valves modelling.
6. Examples solved by means of simulation programs.
7. Analytic computation of hydraulic mechanism acceleration and deceleration.
8. Computer simulation of hydraulic mechanism acceleration and deceleration.
9. Laboratory verification of the computer simulation of hydraulic mechanism acceleration and deceleration.
10. Pneumatic computations of a pneumatic system elements.
11. Use of a computer program for a pneumatic mechanism animation.
12. Computations of volume pumps basic types.
13. Computation of pressure and flow relations in a system equipped with a piston pump.
Elearning