Course detail

Principles of Flight II

FSI-OZ2Acad. year: 2023/2024

Static and dynamic longitudinal stability. Neutral point, static margin. Static directional stability. Static lateral stability. Factors affecting static lateral stability - dihedral and sweep angle of the wing. Dynamic directional-lateral stability - spiral divergence, stable and unstable Dutch roll motion.
Dynamic stability modes and their influence on aircraft handling. Controllability and maneuvrability. Pitch (longitudinal) control, yaw (directional) control and roll (lateral) control. Trimming. Operating limitations. Aerodynamics of propeller.
Flight mechanics of the basic regimes - straight horizontal steady flight, climb, descent and turns. Asymmetric thrust.

Language of instruction

Czech

Number of ECTS credits

4

Mode of study

Not applicable.

Entry knowledge

The basics of mathematics - differential and integral calculus, common differential equations. The basics of common mechanics – force effect on a body, kinematics, dynamics. The basics of aerodynamics.

Rules for evaluation and completion of the course

The condition for granting the credit is 95 % physical participation in all forms of teaching. Furthermore, it is necessary to submit completed assignments within exercises and self-study. Obtaining credit is a condition of admission to the exam. The exam is written and then oral, while the focus of proving knowledge lies on a written exam, which can be taken in the form of a test. Classification according to the Study and Examination Regulations of the FME.


Lectures and seminars are compulsory, and the attendance (95% at the minimum) is checked and recorded. The absence (in justifiable cases) can be compensated by personal consultation with the lecturer and elaboration of individually assigned topics and exercises. Individual tasks must be finished and handed in the credits week at the latest.

Aims

The goal is to familiarize students with basic problems of flying characteristics of an atmospheric aircraft, flight stability, and controllability. Students will learn to judge the influence of operating parameters and flight conditions on aircraft flying characteristics.
Familiarizing with basic criteria for evaluating flying characteristics of an atmospheric aircraft. Qualitative and quantitative considering of flight performance and dynamic behavior regarding piloting and optimal use of aircraft during flying activity.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Daněk, V.:Mechanika letu II, Letové vlastnosti, CERM, Brno, 2011. (CS)
EASA ATPL Ground Training Series: Principles of Flight. Book No 13, EASA-First Edition, Revised for NPA29. United Kingdom: CAE Oxford Aviation Academy, 2020 (EN)

Recommended reading

Daněk,V.- Filakovský,K. Základy letu. Učební texty pro teoretickou přípravu dopravních pilotů dle předpisu JAR-FCL-1. Brno: Akademické nakladatelství CERM, 2006. 314 s. ISBN 80-7204-449-4. (CS)

Classification of course in study plans

  • Programme B-PRP-P Bachelor's 2 year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hod., compulsory

Teacher / Lecturer

Syllabus

1. Equilibrium and stability of steady flight.
2. Longitudinal static stability. Neutral point, static margin.
3. Longitudinal dynamic stability - short period and phugoid oscillations.
4. Directional static stability.
5. Lateral static stability - the influence of dihedral and sweep angle of the wing.
6. Lateral-directional dynamic stability - spiral divergence, Dutch roll.
7. Lateral-directional controllability - pitch, yaw and roll control.
8. Longitudinal controllability - stick force per "g".
9. Trimming.
10. Operating limitations - flutter, maneuvering envelope, gust envelope.
11. Propellers.
12. Basic flight regimes - steady level flight, climb, descend and turns.
13. Asymmetric thrust.

Exercise

13 hod., compulsory

Teacher / Lecturer

Syllabus

1. Equilibrium and stability of steady flight.
2. Longitudinal static stability. Neutral point, static margin.
3. Longitudinal dynamic stability - short period and phugoid oscillations.
4. Directional static stability.
5. Lateral static stability - the influence of dihedral and sweep angle of the wing.
6. Lateral-directional dynamic stability - spiral divergence, Dutch roll.
7. Lateral-directional controllability - pitch, yaw and roll control.
8. Longitudinal controllability - stick force per "g".
9. Trimming.
10. Operating limitations - flutter, maneuvering envelope, gust envelope.
11. Propellers.
12. Basic flight regimes - steady level flight, climb, descend and turns.
13. Asymmetric thrust.