Course detail

Machine Vision

FSI-VSVAcad. year: 2023/2024

The course is aimed at a digital photography fundamentals and processing of digital images within computer vision systems. The course focus at the specifics of the computer vision in terms of lighting and capturing of scenes.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Entry knowledge

Expected to have basic knowledge of algorithms, programming, and of fundamental concepts in mathematics and physics.

Rules for evaluation and completion of the course

Knowledge and skills are verified by credit and examination.
Credit requirements: elaboration of a given practical task. Attendance at seminars is obligatory. Examination is oral and it covers the whole curriculum. 


Attendance at lectures is recommended, attendance at seminars is obligatory and checked. Absences can be compensated for by attending a seminar with another group in the same week, or at the end of semester within a special seminar.

Aims

To acquaint students with basic principles of interaction of radiation with matter, with instrumentation for applications of computer vision in industry, and with image processing methods used in machine vision applications. 


At the end of the course, the students will be able to:

  • select appropriate instrumentation for various machine vision applications,
  • design appropriate installation of the instrumentation,
  • create data processing parts of machine vision systems for basic machine vision applications.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

A Practical Guide to Machine Vision Lighting. Automated Test and Automated Measurement Systems - National Instruments [online]. National Instruments, 2019, 30. ledna 2017 [cit. 2019-02-19]. Dostupné z: http://www.ni.com/white-paper/6901/en/ (EN)
BATCHELOR, Bruce G. Machine vision handbook: with 1295 figures and 117 tables [online]. 1. London: Springer, [2012] [cit. 2019-02-19]. ISBN 978-1-84996-169-1. Dostupné z: https://link.springer.com/referencework/10.1007%2F978-1-84996-169-1 (EN)
GONZALEZ, Rafael C. a Richard E. WOODS. Digital image processing. Fourth edition. New York: Pearson, [2018]. ISBN 978-0133356724. (EN)
HLAVÁČ, Václav a Miloš SEDLÁČEK. Zpracování signálů a obrazů. Fourth edition. Praha: Vydavatelství ČVUT, 2000. ISBN 80-010-2114-9. (CS)
MCMANAMOM, Paul. Field Guide to Lidar. 1. Bellingham, Washington 98227-0010 USA: SPIE, 2015. ISBN 9781628416541. (EN)
SZELISKI, Richard. Computer Vision: Algorithms and Applications [online]. 1. London: Springer, 2010 [cit. 2019-02-19]. Texts in computer science. ISBN 978-1-84882-935-0. Dostupné z: https://www.springer.com/gp/book/9781848829343 (EN)

Recommended reading

HAVEL, Otto. Strojové vidění I: Principy a charakteristiky. Automa. Automa – časopis pro automatizační techniku, s. r. o., 2008, 14(1), 42-45. ISSN 1210-9592. (CS)
HAVEL, Otto. Strojové vidění II: Úlohy, nástroje a algoritmy. Automa. Automa – časopis pro automatizační techniku, s. r. o., 2008, 14(2), 54-56. ISSN 1210-9592. (CS)
HAVEL, Otto. Strojové vidění III: Kamery a jejich části. Automa. Automa – časopis pro automatizační techniku, s. r. o., 2008, 14(3), 42-44. ISSN 1210-9592. (CS)
HAVEL, Otto. Strojové vidění IV: Osvětlovače. Automa. Automa – časopis pro automatizační techniku, s. r. o., 2008, 14(4), 47-49. ISSN 1210-9592. (CS)

Elearning

Classification of course in study plans

  • Programme N-AIŘ-P Master's 2 year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1.Basic principles of digital imaging
2. Sensors for digital imaging (area-scan camers)
3. Lens and their properties
4. Lighting techniques for machine vision
5. Optic filters and their application in computer vision systems
6. Line-scan cameras
7. Digital image representation, digital image enhancement
8. Image filtering, edge detection, feature extraction
9. Segmentation
10. Object recognition
11. Object classification
12. Object tracking
13. Lidar

Laboratory exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

1. Introduction to MATLAB – computer vision toolbox.
2.Industrial cameras and their configuration.
3. Selection, installation and setting of lenses, lens defects.
4. Installation and manipulation with lighting. Impact of lighting on displaying of interest areas.
5. Impact of lighting on displaying of interest areas
6. Selection and implementation of filters. Impact of filters on displaying of interest areas.
7. Image enhancement using software tools.
8. Design and implementation of computer vision systems for a given task.
9 .Design and implementation of computer vision systems for a given task.
10. Design and implementation of computer vision systems for a given task.
11. Work with Lidar.
12. Individual project.
13. Individual project.

Elearning