Course detail
Biometric Systems
FIT-BIOAcad. year: 2023/2024
Theory of the signal processing, especially image signal processing, for the purposes of the biometry. Introduction of the basic methods and techniques of the static single biometric features: fingerprint, hand geometry, face and its thermogram, iris, retina, handwriting. Recognition using the dynamic features: lip movements, typing or gait. Standards in the biometry. Applications of the biometry.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Entry knowledge
- Student should be familiar with the basics of the 1- and 2-dimensional signal processing.
- Valid schooling of Edict No. 50 (work with electrical devices) is needed.
Rules for evaluation and completion of the course
- Mid-term written test.
- Attending of the laboratory seminars.
- Project.
Mid-term exam, presence in the laboratory practice, projects and final exam are monitored and given points for. There is no way to obtain the points for the mid-term exam, project after the deadline and laboratory practice additionally. Final exam has two additional correction possibilities.
Aims
To learn the actual biometric technologies (fingerprint, eye retina, eye iris, DNA etc.) and their application in the IT and in the security systems. To learn methods for evaluation of the reliability and quality of the biometric systems, including biometric standards.
After completing the course, the student understands theory of the signal processing, functionality of different biometric technologies and of their importance in the IT security, including systems for the police purposes. The student has knowledge of the methods of the biometric systems evaluation.
Study aids
Prerequisites and corequisites
Basic literature
Bhanu, B., Tan, X.: Computational Algorithms for Fingerprint Recognition, Kluwer Academic Publishers, USA, 2004, ISBN 1-4020-7651-7
Bolle, R.M., Connell, J.H., Pankanti, S., Ratha, N.K., Senior, A.W.: Guide to Biometrics, Springer Verlag, 2004, ISBN 0-387-40089-3
Drahanský, M.: Hand-Based Biometrics: Methods and Technology. London: The Institution of Engineering and Technology, 2018. ISBN 978-1-78561-224-4
Drahanský, M., Orság, F., Doležel, M. a kol.: Biometrie, Brno, CZ, Computer Press, 2011, ISBN 978-80-254-8979-6
Chirillo, J., Blaul, S.: Implementing Biometric Security, Wiley Publishing, 2003, ISBN 0-7645-2502-6
Nanavati, S., Thieme, M., Nanavati, R.: Biometrics - Identity Verification in a Networked World, Wiley Publishing, 2002, ISBN 0-471-09945-7
Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition, Springer, New York, 2003, ISBN 0-387-95431-7
Woodward, J.D., Orlans, N.M., Higgins, P.T.: Biometrics - Identity Assurance in the Information Age, McGraw-Hill Osborne Media, 2002, ISBN 007-222227-1
Recommended reading
Bolle, R.M., Connell, J.H., Pankanti, S., Ratha, N.K., Senior, A.W.: Guide to Biometrics, Springer Verlag, 2004, ISBN 0-387-40089-3
Drahanský, M., Orság, F. a kol.: Biometrie, Computer Press, 2011, ISBN 978-80-254-8979-6 (k dostání v knihovně FIT/available in FIT library)
Drahanský, M.: Hand-Based Biometrics: Methods and Technology. London: The Institution of Engineering and Technology, 2018. ISBN 978-1-78561-224-4 (k dostání v knihovně FIT/available in FIT library)
Chetty, G., Yang, J.: Advanced Biometric Technologies, InTech, 2011, p. 394, ISBN 978-953-307-487-0.
Nanavati, S., Thieme, M., Nanavati, R.: Biometrics - Identity Verification in a Networked World, Wiley Publishing, 2002, ISBN 0-471-09945-7
Yang, J.: Biometrics, InTech, 2011, p. 278, ISBN 978-953-307-618-8.
Yang, J., Nanni, L.: State of the Art in Biometrics, InTech, 2011, p. 326, ISBN 978-953-307-489-4.
Elearning
Classification of course in study plans
- Programme IT-MSC-2 Master's
branch MIN , 0 year of study, winter semester, compulsory-optional
branch MBS , 2 year of study, winter semester, compulsory
branch MPV , 0 year of study, winter semester, elective
branch MIS , 0 year of study, winter semester, elective
branch MGM , 0 year of study, winter semester, elective
branch MBI , 1 year of study, winter semester, compulsory
branch MSK , 0 year of study, winter semester, elective
branch MMM , 0 year of study, winter semester, elective - Programme MITAI Master's
specialization NSPE , 0 year of study, winter semester, elective
specialization NBIO , 0 year of study, winter semester, elective
specialization NSEN , 0 year of study, winter semester, elective
specialization NVIZ , 0 year of study, winter semester, elective
specialization NGRI , 0 year of study, winter semester, elective
specialization NADE , 0 year of study, winter semester, elective
specialization NISD , 0 year of study, winter semester, elective
specialization NMAT , 0 year of study, winter semester, elective
specialization NSEC , 0 year of study, winter semester, compulsory
specialization NISY up to 2020/21 , 0 year of study, winter semester, elective
specialization NCPS , 0 year of study, winter semester, elective
specialization NHPC , 0 year of study, winter semester, elective
specialization NNET , 0 year of study, winter semester, elective
specialization NMAL , 0 year of study, winter semester, elective
specialization NVER , 0 year of study, winter semester, elective
specialization NIDE , 0 year of study, winter semester, elective
specialization NEMB , 0 year of study, winter semester, elective
specialization NISY , 0 year of study, winter semester, elective
specialization NEMB up to 2021/22 , 0 year of study, winter semester, elective
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
- Introduction to the biometric systems
- Theory of the sound and image signal processing
- Evaluation of the reliability and quality of the biometric systems
- Fingerprint recognition
- Liveness detection on fingers
- Hand geometry, veins and nail recognition
- Face and face thermogram recognition
- Iris and retina recognition
- Handwriting and signature recognition
- Dynamic biometric characteristics
- DNA and its application in the biometry
- Biometric standards
- Biometric systems of the future
Laboratory exercise
Teacher / Lecturer
Syllabus
- Fingerprint recognition, dactyloscopy, work with sensors, spoofing, liveness detection
- Eye retina and eye iris, 3D face model
- Signature and its spoofing, 2D and 3D hand geometry, recognition of hand veins, thermograms of face and hand
Project
Teacher / Lecturer
Syllabus
- Fingerprint recognition
- Liveness detection
- Hand geometry, veins and nail recognition
- Face and face thermogram recognition
- Iris and retina recognition
- Handwriting and signature recognition
- Dynamic biometrical characteristics
- DNA and its application in the biometry
- Biometrical standards
Elearning