Course detail

Graphic and Multimedia Processors

FIT-GMUAcad. year: 2023/2024

Introduction, basic concepts. Graphic system architecture, CUDA. OpenCL. OpenGL. Computation optimization. Memory management. Unified memory. Graphic pipeline, paralelizatiom. Graphical systems SGI. Evolution of the NVIDIA GPU architecture GF7800 up to Ampere. MM systems, MMX, SSE, AVX. GPU for mobile  systems. Game consoles. Approximate computation, energy aware computations. Texture mapping and compression.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Entry knowledge

Not applicable.

Rules for evaluation and completion of the course

Passing labs and finishing the project.
Passing labs and finishing the project. Substitution according to the decision of a teacher.

Aims

To give the students the outline of the evolution of graphic and multimedia systems architecture, the hardware support and software implementation of graphical and multimedia operations, image processing and compression, and making use of OpenCL and OpenGL languages for image information processing, optimization of the computation. New CUDA tool for programming GPGPU. Approximate computation. MM systems, mobile systems, energy aware systems.
Students will get knowledge of graphic systems architecture, hardware support for graphical and multimedia operations and programming them in OpenCL, OpenGL  and CUDA environment.

Study aids

Not applicable.

Prerequisites and corequisites

Basic literature

Not applicable.

Recommended literature

Přednáškové materiály v elektronické formě.

Classification of course in study plans

  • Programme IT-MSC-2 Master's

    branch MPV , 0 year of study, winter semester, compulsory-optional
    branch MGM , 0 year of study, winter semester, compulsory-optional
    branch MBS , 0 year of study, winter semester, elective
    branch MIS , 0 year of study, winter semester, elective
    branch MIN , 0 year of study, winter semester, elective
    branch MBI , 0 year of study, winter semester, elective
    branch MSK , 0 year of study, winter semester, elective
    branch MMM , 0 year of study, winter semester, elective

  • Programme MITAI Master's

    specialization NSPE , 0 year of study, winter semester, elective
    specialization NBIO , 0 year of study, winter semester, elective
    specialization NSEN , 0 year of study, winter semester, elective
    specialization NVIZ , 0 year of study, winter semester, elective
    specialization NGRI , 0 year of study, winter semester, elective
    specialization NADE , 0 year of study, winter semester, elective
    specialization NISD , 0 year of study, winter semester, elective
    specialization NMAT , 0 year of study, winter semester, elective
    specialization NSEC , 0 year of study, winter semester, elective
    specialization NISY up to 2020/21 , 0 year of study, winter semester, elective
    specialization NCPS , 0 year of study, winter semester, elective
    specialization NHPC , 0 year of study, winter semester, elective
    specialization NNET , 0 year of study, winter semester, elective
    specialization NMAL , 0 year of study, winter semester, elective
    specialization NVER , 0 year of study, winter semester, elective
    specialization NIDE , 0 year of study, winter semester, elective
    specialization NEMB , 0 year of study, winter semester, elective
    specialization NISY , 0 year of study, winter semester, elective
    specialization NEMB up to 2021/22 , 0 year of study, winter semester, elective

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

  • Introduction, basic concepts. Graphic system architecture, OpenCL. CUDA. Vulcan. OpenGL-CL cooperation, shaders.   
  • Introduction to up-date GPU architectures, OpenCL library.
  • Memory model, profiling.
  • Mapping of algorithms onto GPU, optimization.
  • Memory transfers, advanced optimization techniques.
  • Graphical pipeline. Advanced raster graphic architecture. Graphical systems SGI. 
  • Graphic multiprocessors  GF7800, 8800.
  • GPGPU - Tesla T8, Fermi, Tesla P100, Pascal, Titan GTX 1080, Echelon, Turing, Ampere.
  • Memory management, unified memory.
  • Enargy aware GPU, a mobile 363 microW.
  • Approximate computation.
  • MM systems, MMX, SSE, AVX.
  • MMP, VLIW, SoC, GPU for mobile systems.
  • Game consoles. PS4, Xbox 360, One. AMD APU. 
  • Texture mapping and compression. Pixel interpolation. 

Exercise in computer lab

8 hod., compulsory

Teacher / Lecturer

Syllabus

  1. Introduction to OpenCL
  2. OpenCL memory model
  3. Cooperation between threads in OpenCL
  4. Parallelization using OpenGL

Project

18 hod., compulsory

Teacher / Lecturer

Syllabus

Individual project assignment, 28 points.