Course detail

Cryptography

FIT-KRYAcad. year: 2023/2024

Introduction to cryptography, basic cryptographic algorithms, secret key encryption, public key encryption. Data transmission security.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Entry knowledge

Not applicable.

Rules for evaluation and completion of the course

A mid-term exam evaluation and an evaluation of projects.
A written mid-term test, a regular evaluation of projects. The test does not have correction option, the final exam has two possible correction terms.

Aims

The goal is to make students familiar with the basic concepts applied cryptography, including classical cryptography and modern secret key and public key cryptography.
Students will learn basic principles of applied cryptography, including classical cryptography and modern secret key and public key cryptography.
Students will learn the role of security and functionality in information systems.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

Hanáček, P., Staudek, J.: Bezpečnost informačních systémů, ÚSIS, Praha, 2000, s. 127, ISBN80-238-5400-3
Menezes, Van Oorschot, Vanstone: Handbook of Applied Cryptography, CRC Press Series on Discrete Mathematics and Its Applications, Hardcover, 816 pages, CRC Press, 1997, available on WWW
Nechvatal, J.: PUBLIC-KEY CRYPTOGRAPHY, NIST Special Publication 800-2, National Institute of Standards and Technology, Gaithersburg, MD 20899, 1991, available on WWW
Savard, J. J. G.: A Cryptographic Compendium, 2000, available on WWW
Stallings, W.: Cryptography and Network Security, Pearson India, 2018, ISBN 9789332585225

Elearning

Classification of course in study plans

  • Programme IT-MSC-2 Master's

    branch MPV , 0 year of study, summer semester, compulsory-optional
    branch MIS , 2 year of study, summer semester, compulsory-optional
    branch MIN , 0 year of study, summer semester, compulsory-optional
    branch MBI , 0 year of study, summer semester, compulsory-optional
    branch MSK , 1 year of study, summer semester, compulsory-optional
    branch MMM , 0 year of study, summer semester, compulsory-optional
    branch MBS , 2 year of study, summer semester, compulsory
    branch MGM , 2 year of study, summer semester, elective

  • Programme MITAI Master's

    specialization NISY , 0 year of study, summer semester, elective
    specialization NSPE , 0 year of study, summer semester, elective
    specialization NBIO , 0 year of study, summer semester, elective
    specialization NSEN , 0 year of study, summer semester, elective
    specialization NVIZ , 0 year of study, summer semester, elective
    specialization NGRI , 0 year of study, summer semester, elective
    specialization NADE , 0 year of study, summer semester, elective
    specialization NISD , 0 year of study, summer semester, elective
    specialization NMAT , 0 year of study, summer semester, elective
    specialization NSEC , 0 year of study, summer semester, compulsory
    specialization NISY up to 2020/21 , 0 year of study, summer semester, elective
    specialization NCPS , 0 year of study, summer semester, elective
    specialization NHPC , 0 year of study, summer semester, elective
    specialization NNET , 0 year of study, summer semester, compulsory
    specialization NMAL , 0 year of study, summer semester, elective
    specialization NVER , 0 year of study, summer semester, elective
    specialization NIDE , 0 year of study, summer semester, elective
    specialization NEMB , 0 year of study, summer semester, elective
    specialization NEMB up to 2021/22 , 0 year of study, summer semester, elective

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

  1. Classical cryptography.
  2. Modern cryptography, symmetric and asymmetric ciphers.
  3. Symmetric ciphers. Key length, brute force attack.
  4. Examples of symmetric ciphers. Feistel, DES, modes of operation.
  5. Typical application of symmetric cryptography.
  6. Asymmetric cryptography.
  7. Electronic signature.
  8. Examples of asymmetric ciphers, RSA.
  9. DSS, function, attacks, optimization.
  10. ElGamal, keyed hash, MAC.
  11. Asymmetric cryptography application examples.
  12. Key management for symmetric cryptography.
  13. Key management for asymmetric cryptography, certificates, X.509.

Project

13 hod., compulsory

Teacher / Lecturer

Elearning