Course detail

Computer Graphics

FIT-PGDAcad. year: 2023/2024

Matematics representation of 3D objects, modeling of curves and surfaces, transformations, projections, lighting and lighting models, hidden surface detection/removal, colour models, basic algorithms of animation, virtual reality problems, architectures for computer graphics support.

Doctoral state exam - topics:

  1. Projections, homogeneous co-ordinates, projection of points, lines, triangles and other objects.
  2. Rasterization, general principles, construction of rasteriazation equations for lines.
  3. Colours, physics fundaments of colours, colours models used in computer graphics, acquisition and rendering of colour images.
  4. Visibility, methods of visibility detection, representation of scenes, limitations of representation, holography.
  5. Realistic rendering, rendering of moving objects and scenes, additional aspects of realistic and real-time rendering.

Language of instruction

Czech

Mode of study

Not applicable.

Entry knowledge

Not applicable.

Rules for evaluation and completion of the course

  • Individual presentation

During the course, it is necessary to submit the summary of a selected topic and pass the exam. Teaching is performed as lectures and controlled seminars, the missed classes need to be replaced by self-study.

Aims

The aim of the course is to get the student acquanínted with the principles of 3D computer graphics with focus on the contemporary methods used in real-time and photorealistic graphics rendering of 3D scenes.
Student is able to implement discussed algortihms into the applications rendering 3D scenes and objects.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Foley, J., van Dam, A., Feiner, S., Hughes, J.: Computer Graphics - Principles and Practice. 2nd ed. Addison - Wesley, Massachusetts, 1990 Žára, J. a kol.: Počítačová grafika - principy a algoritmy GRADA, Praha, 1992 Moeller, T., Haines, E., Real-time Rendering, AK Peters, 1999, ISBN 1569911012 Sillion, F., Puech, C., Radiosity and Global Illumination, Morgan Kaufmann, 1994, ISBN:1558602771 Ebert, D., S. et al., Texturing and Modelling: A Procedural Approach, Academic Press, 1998, ISBN 0-12-228760-6  Thalmann, N., M., Thalmann, D., Interactive Computer Animation, Prentice Hall, 1996, ISBN 0-13-518309-XPlus literatura doporučená ve výuce (články).

Recommended reading

Foley, J., van Dam, A., Feiner, S., Hughes, J.: Computer Graphics - Principles and Practice. 3rd ed. Addison - Wesley, Massachusetts, 2013, ISBN 0321399528
Literatura doporučená ve výuce (články).
N. M. Thalmann; D. Thalmann : Editorial issue 31.3; Computer Animation And Virtual Worlds. 2020, ISSN 15464261

Žára, J. a kol.: Počítačová grafika - principy a algoritmy, Computer PRess, Praha, 2005,  ISBN 8025104540

Classification of course in study plans

  • Programme DIT Doctoral 0 year of study, winter semester, compulsory-optional
  • Programme DIT Doctoral 0 year of study, winter semester, compulsory-optional
  • Programme DIT-EN Doctoral 0 year of study, winter semester, compulsory-optional
  • Programme DIT-EN Doctoral 0 year of study, winter semester, compulsory-optional

  • Programme CSE-PHD-4 Doctoral

    branch DVI4 , 0 year of study, winter semester, elective

  • Programme CSE-PHD-4 Doctoral

    branch DVI4 , 0 year of study, winter semester, elective

  • Programme CSE-PHD-4 Doctoral

    branch DVI4 , 0 year of study, winter semester, elective

  • Programme CSE-PHD-4 Doctoral

    branch DVI4 , 0 year of study, winter semester, elective

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

In the first part of semester, teaching is through standard "lectures of teacher to students".

Breakdown of topics (example):

  1. Introduction to the course, brief evaluation and "mapping of knowledge" of the students, update of the lecture topics
  2. Projections revisited, homogeneous co-ordinates, example of projection construction, projection of points, lines, triangles and other objects
  3. Rasterization, general principles, construction of rasteriazation equations for lines, circles, and ellipses
  4. Colours, physics fundaments of colours, colours models used in computer graphics, acquisition and rendering of colour images
  5. Geometry algebra - introduction, principles, objects, operations, demonstration and examples of usage, overview of advantages/disadvantages
  6. Visibility, methods of visibility detection, representation of scenes, limitations of representation, holography
  7. Realistic rendering, rendering of moving objects and scenes, additional aspects of realistic and real-time rendering

In the next part of semester, the course is conducted through a series of seminars where students present a presentation on topic of their choice that is followed by a discussion.

Guided consultation in combined form of studies

26 hod., optionally

Teacher / Lecturer