Course detail

Electrical Apparatus

FEKT-BPA-EPRAcad. year: 2023/2024

Main topics of the course:

Main state, stress and functions of el. apparatuses, LV and HV e. apparatuses.
Switching on in el. circuits. Inrush current. Switching off in el. circuits. Recovery voltage.
Heat effects of el. current.
Force effects of el. current.
Switching off in el. circuits without switching arc. Electrical discharges. Switching proccess with el. arc.
Switching off of opperational and short-circuit currents. Electrical contacts.
El. apparatuses without el. arc and operational el. apparatuses. Design and properties.
Power el. apparatuses. Design and properties.
Instrumental transformes. Gaseous insulated systems with SF6.
Principles of el. devices protection.
Protection of lines against overload.
Protection of lines againts short-circuit currents. Testing of el. apparatuses.

Language of instruction

English

Number of ECTS credits

6

Mode of study

Not applicable.

Entry knowledge

Student who will book this course should to know basic mathematical operation, basic physical and electrotechnical principles.

Atom construction. Electrical charges. Electrical field. Elementary electrotechnical laws (Coulomb, Ohm, Faraday, Kirchhoff). Magnetic field. Forces acting on charges and wires. Differential equation describing RL and RLC circuits. Elementary transient phenomena. Scalar and vector product. Goniometrical function. Integral function of one variable.

Rules for evaluation and completion of the course

Numerical exercises N1-N4. Each 1 point. Min. 2 p., max. 4 p.
Laboratory task L1-L8. Each task 2 points. Min. 8 p., max. 16 p.
Written test about content of numerical exercises an laboratory task. min. 5 p., max 20 p.
Written part of examination. Min 30 point, max. 60 points. Numerical exercises N1-N4. Each 1 point. Min. 2 p., max. 4 p.

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.
Numerical exercises N1-N4. Each 1 point. Min 2 p., max 4 p.
Laboratory task L1-L8. Each task 2 points. Min. 8 p., max 16 p.
Written test concerning of numerical exercises an laboratory task content. min. 5 p., max 20 p.
Oral examination concerning of laboratory tasks. There is necessary to succeed.
Written part of examination. Min 30 point, max. 60 points.

Aims

Identify (describe and explain)
- main phenomena in el. apparatuses,
- function, stress and utilization of el. apparatuses in LV, MV and HV in el. circuits.

1.+2. Students know (can describe and explain)
- main physical phenomena, functional state, function and stress in el. apparatuses,
- main function, kinds and utilization of el. apparatuses in el. circuit LV, MV and HV,
- force and heat action on components of el. apparatuses
- characteristics of each circuit breakers,
- bases of el. devices protection.
3. Students can (are able):
- measure and interpet results of 8th laboratory exercises,
- interpret results of 4th numerical task.
4. Students are able to analyse and clasify:
- each kinds of el. apparatuses acording to different classifier,
- circuit breakers and protection apparatuses.
5. Students are able to qualify and recommend:
- adequate el. apparatus for el. circuit in dependence on parameters,
- adequate circuit breaker for protected device in circuit.
6. Students are able to compose and defence:
- reports and results from laboratory excercises,
- semestral and bachelor projects.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme BPA-ELE Bachelor's

    specialization BPA-PSA , 3 year of study, summer semester, compulsory-optional

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

1. Main functions el. apparatuses lv and hv.
2. Switching on in el. circuits.
3. Heat effect of current.
4. Force effect of current.
5. Switching off in el. circuits without switching arc. Electrical discharges. Switching proccess with el. arc. Recovery voltage.
6. Switching off opperational and short currents.
7. Electrical contacts.
8. Simple and operational el. apparatuses. Design and properties.
9. Power el. apparatuses. Design and properties.
10. Measure transformes and gaseous insulated systems with SF6.
11. Principles of el. equipment protection.
12. Protection against electric line overloading.
13. Protection electric line against short currents.
Laboratories:
1. Switching on DC and AC currents.
2. Measurement of el. apparatus heating curve.
3. Determination of recovery voltage in RLC circuit without el. arc.
4. Measurement of DC arc characteristics.
5. Measurement on circuit breaker.
6. Measurement of AC arc characteristic.
7. Measurement on thermal relay.
8. Measurement on residual current device.
9. Protection against overloading, time-current characteristics.
10. Protection against short current, setting of modern devices.

Laboratory exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

Laboratories:
N1. Switching on DC and AC currents.

L1. Measurement of el. apparatus heating curve.
L2. Recovery voltage in RLC circuit without electric arc.
L3. Measurement of DC arc characteristics.
L4. Measurement on circuit breaker.

L5. Measurement of AC arc characteristic.
L6. Measurement on thermal relay.
L7. Measurement on residual current device.
L8. Measurement on electromagnet, tensile forces.

N2. Circuit breakers and software support for system designers.
N3. Protection against overloading, time-current characteristics.
N4. Protection against short current, setting of modern devices.