Course detail
Special Sensors
FEKT-MKC-SPSAcad. year: 2023/2024
The course deals with the principles of the most widely used semiconductor, optoelectronic and fiber-optic sensors. Students will learn characteristic constructions of sensors, the basic technological processes in their production, typical characteristics, parameters, usage, applications and limitations of sensors. Emphasis is also placed on familiarization with types of output circuits, data processing and signal processing from the output of these sensors . There will be discussed also a requirements for smart sensors (eg. methods of diagnostics, calibration sensors) and MEMS sensors. Students will gain practical experience with selected semiconductor photoelectric sensors and fiber in the laboratory exercises.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Entry knowledge
Rules for evaluation and completion of the course
Evaluation laboratory 0 - 40
Written part of exam 0 - 50
Oral part of exam 0 - 10
Definition of controlled education will be established by announcement published by course supervisor every year. Mandatory participation in laboratory exercises, in case of absence the exercise work can be supplemented with alternative exercise in same week or with a self-study of additional literature.
Aims
The student will be able to explain the principles of semiconductor, optoelectronic and fiber-optic sensors, define the characteristics of intelligent sensors. He will be able to decide on the appropriate choice of the sensor for the particular application with respect to their characteristics and limitation. Student will be able to design circuits for signal processing from these sensors and perspectively also plan and implement a measurement chain in the real applications.
Study aids
Prerequisites and corequisites
Basic literature
GULDAN, Arnošt. Mikroelektronické senzory. Bratislava: Alfa, 1988. Pokroky v elektronike a elektrotechnike. (SK)
HUSÁK, Miroslav. Mikrosenzory a mikroaktuátory. Praha: Academia, 2008. Gerstner. ISBN 978-80-200-1478-8. (CS)
MEIJER, G. C. M. Smart sensor systems. Chichester, U.K.: J. Wiley, 2008. ISBN 0470866918. (EN)
RIPKA, Pavel a Alois TIPEK, ed. Master books on sensors: modular courses on modern sensors Leondaro da Vinci project CZ/PP-134026. Praha: BEN - technical literature, 2003. ISBN 80-7300-129-2. (EN)
RIPKA, Pavel. Senzory a převodníky. 2. vyd. V Praze: České vysoké učení technické, 2011. ISBN 978-80-01-04696-8. (CS)
TURÁN, Ján. Optické vláknové senzory. Praha: Tesla-Výzkumný ústav pro sdělovací techniku A. S. Popova, 1990. Mikro quo vadis. (CS)
Recommended reading
SALEH, Bahaa E. A. a Malvin Carl TEICH. Základy fotoniky. Praha: Matfyzpress, 1996. ISBN 80-85863-12-X. (CS)
YEH, Chai. Handbook of fiber optics: theory and applications. San Diego: Academic Press, c1990. ISBN 0127704558. (EN)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
1. Materials for semiconductor sensors, basic technological processes.
2. Radiation sources - basic quantities and types of radiation sources, characteristics and wiring. LED, LD and SLED - parameter and usage.
3. Semiconductor radiation sensors - ionizing and non-ionizing radiation.
4. Semiconductor sensors of mechanical quantities - pressure sensors, accelerometers, gyroscopes.
5. Semiconductor magnetic field sensors - Hall effect, magnetoresistive sensors, AMR, GMR, magneto-diode, magneto-transistor.
6. Semiconductor temperature sensors, chemical sensors and biosensors.
7. Introduction to fiber optics - classification and properties of optical fibers. Fiber connections and connectors.
8. Optical fiber sensors - classification, properties, construction, measured quantities.
9. Measurement of physical quantities by using fiber optic sensors.
10. Smart sensors - requirements, properties, methods of linearization, self-diagnostics, calibration, IEEE 1451 standards group.
Laboratory exercise
Teacher / Lecturer
Syllabus