Course detail
Advanced Methods in Biostatistics
FEKT-MPA-STAAcad. year: 2024/2025
The course is designed as a practice-oriented course focused on advanced application of multivariate statistics and stochastic modeling of the biological and medical data. The course follows on the basic methodology of one-dimensional data analysis. The methods of descriptive multivariate analysis with special emphasis on the visibility of graphical multidimensional data, stochastic modeling and prediction are discussed. Theoretical aspects are always given by way of examples and the emphasis is on the practical aspects of teaching. All computational techniques are practiced using commercially available software tools (Statistica for Windows, SPSS).
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Entry knowledge
Rules for evaluation and completion of the course
Final test for more than 50% points. The test is aimed at testing the overview of multivariate statistics and stochastic modeling.
Participation in seminar is mandatory, two absences are permitted. In the case of multiple absences, it is possible to substitute the seminar after the agreement with teacher (ideally in another parallel group).
Aims
After completion of the course participants will be able to:
• evaluate the assumptions of multivariate data analysis / modeling and select the appropriate method for solving a given problem,
• apply the ordination methods and cluster analysis,
• use the tools of multivariate linear and logistic regression,
• select and use generalized linear models,
• use of multivariate analysis and models in statistical software.
Study aids
Prerequisites and corequisites
Basic literature
MELOUN, Milan a Jiří MILITKÝ. Statistické zpracování experimentálních dat. 1. vyd. Praha: Plus, 1994. ISBN 80-85297-56-6. (CS)
Recommended reading
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Vícerozměrné statistické rozdělení a testy, operace s vektory a maticemi
3. Zviditelnění vícerozměrných dat
4. Podobnosti a vzdálenosti ve vícerozměrném prostoru, asociační matice
5. Shluková analýza
6. Ordinační analýzy - principy redukce dimenzionality
7. Ordinační analýzy - přehled metod
8. Diskriminační analýza
9. Principy stochastického modelování
10. Logistická regrese, analýza ROC křivek
11. Zobecněné lineární modely - základy
12. Pokročilé metody predikce - přehled
13. Strategie analýzy vícerozměrných klinických dat, vícerozměrná data v klinických studiích, základy metaanalýzy
Exercise in computer lab
Teacher / Lecturer
Syllabus
1. Metody vizualizace vícerozměrných dat
2. Transformace dat
BLOK B: Aplikace vícerozměrných metod analýzy dat
3. Výpočet asociační matice
4. Hierarchická shluková analýza
5. Nehierarchická shluková analýza
6. Analýza hlavních komponent, statorová analýza
7. Základy metaanalýzy, vícerozměrné vážení, třídění parametrů
8. Diskriminační analýza
BLOK C. Stochastické modelování
9. Lineární regrese
10. Logistická regrese
11. ROC křivky
12. Zobecněné lineární modely
13. Modelová analýza vícerozměrného souboru