Course detail
Selected Chapters of Concrete Structures 2 (K)
FAST-CL059Acad. year: 2023/2024
Non-linear material models of plain and reinforced concrete and their application in some commercial programming systems of FEM (finite element method).
Modelling of concrete members sections behaviour (linear and non-linear analysis) using the FEM analysis, Non-linear analysis of reinforced concrete sections.
Solution of state of stress effected by temperature load.
Language of instruction
Czech
Number of ECTS credits
5
Mode of study
Not applicable.
Department
Institute of Concrete and Masonry Structures (BZK)
Entry knowledge
structural mechanics, numerical methods, concrete structures, prestressed concrete
Rules for evaluation and completion of the course
Extent and forms are specified by guarantor’s regulation updated for every academic year.
Aims
Analysis of linear and non-linear behaviour of concrete structures sections.
Non-linear static analysis of concrete structures and their parts.
A student gains these knowledge and skills:
• Analysis of linear and non-linear behaviour of concrete structures sections.
• Non-linear static analysis of concrete structures and their parts.
Non-linear static analysis of concrete structures and their parts.
A student gains these knowledge and skills:
• Analysis of linear and non-linear behaviour of concrete structures sections.
• Non-linear static analysis of concrete structures and their parts.
Study aids
Not applicable.
Prerequisites and corequisites
Not applicable.
Basic literature
KHONKE, P. ANSYS - User Manual. Cannonsburg: SAS IP, 1999. (EN)
KOLÁŘ, Vladimír, NĚMEC, Ivan a KANICKÝ, Viktor. FEM - principy a praxe metody konečných prvků. Praha: Computer Press, 1997. ISBN 8072260219 (CS)
Kolektiv autorů. Scia Engineer 2013 Manuals. Nemetschek Scia, 2013. (EN)
KOLÁŘ, Vladimír, NĚMEC, Ivan a KANICKÝ, Viktor. FEM - principy a praxe metody konečných prvků. Praha: Computer Press, 1997. ISBN 8072260219 (CS)
Kolektiv autorů. Scia Engineer 2013 Manuals. Nemetschek Scia, 2013. (EN)
Recommended reading
ČERVENKA, Vladimír, JENDELE, Libor a ČERVENKA, Jan. ATENA Program Documentation, Part 1 - Theory. Praha: Cervenka Consulting, 2012. (EN)
GHALI, Amin, FAVRE, Renaud a ELBADRY, Mamdouh. Concrete Structures. Stresses and Deformations: Analysis and Design for Sustainabil. London: Spon Press, 2012. ISBN 978-0-415-58561-3. (EN)
KOLÁŘ, Vladimír et al. Výpočet plošných a prostorových konstrukcí metodou konečných prvků. Praha: SNTL, 1979. (CS)
ZIENKIEWICZ, O, C., TAYLOR, R. L. a ZHU, J. Z. The Finite Element Method: Its Basis and Fundamentals. Amsterdam: Elsevier Butterworth-Heinemann, 2005. ISBN 0-7506-6320-0. (EN)
GHALI, Amin, FAVRE, Renaud a ELBADRY, Mamdouh. Concrete Structures. Stresses and Deformations: Analysis and Design for Sustainabil. London: Spon Press, 2012. ISBN 978-0-415-58561-3. (EN)
KOLÁŘ, Vladimír et al. Výpočet plošných a prostorových konstrukcí metodou konečných prvků. Praha: SNTL, 1979. (CS)
ZIENKIEWICZ, O, C., TAYLOR, R. L. a ZHU, J. Z. The Finite Element Method: Its Basis and Fundamentals. Amsterdam: Elsevier Butterworth-Heinemann, 2005. ISBN 0-7506-6320-0. (EN)
Classification of course in study plans
Type of course unit
Lecture
26 hod., optionally
Teacher / Lecturer
Syllabus
1. Modelling of cross-section behaviour of concrete members, linear and non-linear analysis. General formulation of the problem as physically non-linear task.
2. Solution of the conditions of equilibrium. Iterative methods. Control of loadd-bearing capacity.
3. Non-linear material models of concrete and reinforced concrete.
4. Cracks, cracks localization, fracture energy, modelling of concrete in tension.
5. Plane state of stress, concrete crushing. Methods of solution of non-linear equations system.
6. Methods of non-linear task solution: layered, integral.
7. Non-linear modelling of flat concrete structures.
8. Non-linear analysis of prestressed concrete sections. Optimisation of reinforcement design into a section.
9. Non-linear material models of concrete and reinforced concrete in some comercial software of FEM systems.
10. Temperature effects on concrete – calculation of temperature stress acting on structures.
Exercise
13 hod., compulsory
Teacher / Lecturer
Syllabus
1.– 3. Calculation analysis of the cross section bearing capacity loaded by combination of bending moment and normal force - physical non-linearity of the concrete and steel. Cross section layer model for compression part. Algorithm development of the calculation with help of Microsoft Excel program.
4. Correction.
5.- 6. Deflection computation of the two way slab within Scia Engineer computing program with the help of non-linear calculation.
7. Correction.
8.- 9. Deflection computation of the two way slab within Scia Engineer computing program with help of linear iterative computation – non-linear behaviour is taken into account by modification of the stiffness matrix within every iterative step.
10. Tasks submission. Credit.