Course detail

Metal Structures 1

FAST-BOA008Acad. year: 2023/2024

Dispositional and structural design and loading in building process of metal-framed structures.
Design of industrial buildings.
Roof structures (cladding, rafters, purlins, girders, bracing, bearings, optional roof members).
Crane girders and material handling systems in industrial buildings.
Crane girder design for travelling cranes (rail, main girder, horizontal bracing beam, bumpers).
Transmission principles of crane girder braking force into substructure.
Bent systems of industrial buildings.
Design of web-plate and built-up columns, footing and column anchorage.
Spatial rigidity of industrial building systems.
Lateral (wind) bracing, bracing systems of buildings with socketed columns only.
Exposed and interior walls structure of industrial buildings.
Window and portal lintel dimensioning.
Production, assembly, maintenance and rebuilding of metal-framed industrial bearing structures.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Department

Institute of Metal and Timber Structures (KDK)

Offered to foreign students

Of all faculties

Entry knowledge

Principles and methods of the design of members and connections of metal structures.

Rules for evaluation and completion of the course

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Aims

The objective of the subject is to introduce students to the problems of this course and to practise acquires knowledge and skills.
Student will learn and get under control the aims of matter in
teachings, focused to problems of structural design of metal industrial buildings, in term of content amplificated more in detail in the schedule of related training subject.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Ferjenčík, P., Schun, J., Melcher, J. a kol.: Navrhovanie oceľových konštrukcií, ALFA Bratislava, 1986 (SK)
BALIO, G. and MAZZOLANI, F. M.: Design of Steel Structures, E&FN Spon, 1999 (EN)
Marek, P.: Kovové konstrukce pozemních staveb, Praha : SNTL ; Bratislava : Alfa, 1985  (CS)

Recommended reading

Aktuálně platné normativní dokumenty související s náplní předmětu.ČSN EN 1993-1-1 až 8 (CS)

Classification of course in study plans

  • Programme BKC-SI Bachelor's 3 year of study, winter semester, compulsory
  • Programme BPA-SI Bachelor's 3 year of study, winter semester, compulsory

  • Programme BPC-SI Bachelor's

    specialization S , 3 year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1. Disposition arrangement and loading. 2. Design of industrial building structures. Composition of roof construction (roof cladding, spars). 3. Simple plate and latticed purlins; jointed, continuous, truss and suspended purlins. 4. Plate and latticed roof girders, roof bracings. 5. Bearings and additional roof structures. 6. Crane runway system in industrial buildings. Crane runways for bridge cranes: loading, rails, a main girder of a crane runway. 7. Design and constructional design of a main girder and a horizontal stiffening girder of a crane runway. Principle of a transmission of a brake force of bridge cranes to the foundations. 8. Systems of industrial building main frames. 9. Design of columns of main frames of factory buildings. Principles of plain and lattice columns design. 10. Base and anchorage systems of columns. Space rigidity of an industrial building system. Cross-wind bracing, bracing of the building with all-stocketed columns. 11. Structure of external and interior walls of an industrial building, design of window and gate lintels. Technology of manufacturing and realization of steel structures. Assembly of steel structures, maintenance, rebuilding and stiffening of steel structures.

Exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

1. Individual assignments of the design of the metal-framed industrial building. Disposition arrangement and loading. 2. Composition of roof construction. 3. Purlins, roof girders, roof bracings. 4. Design and constructional design of a main girder and a horizontal stiffening girder of a crane runway. Principle of a transmission of a brake force of bridge cranes to the foundations. 5. Design of main frame and columns of industrial building. 6. Base and anchorage systems of columns. 7. Space rigidity of the industrial building system and bracings. 8.–11. Elaboration of detailing and drawing documentation.