Course detail

Information Theory and Encoding

FSI-VTI-KAcad. year: 2023/2024

The course is aimed to basics in information theory (message, entropy, transfer of information, discrete and continuous channels) and signals (signal processing, modulation). Further the course includes basic overview of coding methods in areas: bar codes, compression codes, error correcting codes and cryptography. At the end of the course the modern trends in coding are presented (quantum error correction, quantum cryptography).

Language of instruction

Czech

Number of ECTS credits

4

Mode of study

Not applicable.

Entry knowledge

Basic mathematical knowledge is required.

Rules for evaluation and completion of the course

The active participation and mastering the assigned task.
Solving an extra assignment can compensate absence.

Aims

The course objective is to make students familiar with the basics of the Theory of information and Coding theory. A key measure in information theory is "entropy". Applications of fundamental topics of information theory include lossless data compression and channel coding. Codes are used for data compression, cryptography, error-correction and more recently also for network coding..
The acquired knowledge will be sufficient for the good orientation in given principles of ICT.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Lubbe J.C.A.: Information Theory, Cambridge University Press, 1997
SIMMOND A.: Data Communication and Transmission Principles, , 0
TERRELL T.J.,SHARK K.L.: Digital Signal Processing, , 0
USHER M.J.,GUY C.G,: Information and Communication for Engineers, , 0

Recommended reading

Lubbe J.C.A.: Information Theory, Cambridge University Press, 1997
Ošmera P.: Informační systémy, , 0
Ošmera P.: Mikroprocesorová technika a informační systémy, , 0
Přibyl J.,Kodl J.: Ochrana dat v informatice, , 0

Classification of course in study plans

  • Programme N-AIŘ-K Master's 1 year of study, winter semester, compulsory

Type of course unit

 

Guided consultation in combined form of studies

17 hod., compulsory

Teacher / Lecturer

Syllabus

1. Introduction to the information theory 1/2 (information, entropy, mutual information).
2. Introduction to the information theory 2/2 (channel capacity, noisy-channel coding theorem).
3. Basic principle of communication (model of discrete channel).
4. Introduction to encoding theory.
5. Bar Code. RFID technology.
6. Data compression I.
7. Data compression II.
8. Error detection and correction I.
9. Error detection and correction II.
10. Cryptogaphy I.
11. Cryptogaphy II.
12. Cryptogaphy III.
13. Advanced in encoding and cryptography theory (quantum cryptography).

Guided consultation

35 hod., optionally

Teacher / Lecturer

Syllabus

Computer labs (exercises) are consistent with the content of lectures. The aim of the labs is to introduce students to practical part of the course above all using Matlab/Simulink system.
The labs are divided into six parts:
a) Bit rate, channel capacity, information ratio.
b) Signals, modulation methods.
c) Bar code.
d) Data compression.
e) Error detection and correction.
f) Cryptography.