Course detail

Nuclear Power and Alternative Energy Sources

FSI-LJEAcad. year: 2024/2025

Learning outcomes of the course unit The subject acquaints with basic laws of nuclear energy conversion from nuclear fission into thermal, mechanical and electrical energy and with the principal and concrete solutions of reactors and machinery of nuclear power plants. In addition, alternative energy sources (fuel cells, heat pumps) and supplementary transformation technologies (thermal absorption cycles) applicable in power systems are presented. Attention is also paid to possible ways of accumulation of electricity and heat.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Entry knowledge

Atom nucleus physics, thermomechanics, power stations heat circulation loops.

Rules for evaluation and completion of the course

Credit: Active seminars attendance. Complete individual exercises and calculations.
Exam: Test of nuclear energetics principles knowledge, nuclear equipment knowledge, ensuring of nuclear safety knowledge.
Lecture attendance is not obligatory.
Credit attendance is obligatory and it will be checked. Maximum number of nonexcused absences are 2. In case of higher absence is the student obligated to do an individual work in accordance with teachers requirements.

Aims

This subject gives new informations about nuclear energy from nucleus fission to electic energy transformation to students. Alternative energy sources are introduced together with convenient technology for their utilizing.
Students learn calculation bases from field of nuclear and alternative energy sources. Students obtain overview knowledge about related technological instrumentation.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Heřmanský, B.: Termomechanika jaderných reaktorů. Academia, 1986
Murray, R., L. Nuclear Energy - an introduction to the concepts, systems, and applications of nuclear processes. Butterworth-Heinemann. 2001

Recommended reading

Dubšek, F.: Jaderná energetika. PC-DIR Brno, 1994
Heřmanský, B.: Termomechanika jaderných reaktorů. Academia, 1986

Classification of course in study plans

  • Programme N-ETI-P Master's

    specialization TEP , 1 year of study, summer semester, compulsory-optional
    specialization ENI , 1 year of study, summer semester, compulsory-optional
    specialization FLI , 1 year of study, summer semester, compulsory-optional

  • Programme C-AKR-P Lifelong learning

    specialization CLS , 1 year of study, summer semester, elective

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

  1. The world of the smallest dimensions
  2. The World of the Smallest Dimensions II
  3. Nuclear power
  4. Nuclear Fuel Cycle, Fission of Uranium. Radioactive waste.
  5. Neutron genesis, neutron absorption and scattering, nuclear fuel yield .
  6. Nuclear reactors I
  7. Nuclear reactors II.
  8. Hydrogen energy - fuel cells
  9. Heat pumps I
  10. Heat pumps II
  11. Absorption circuits, heat transformers
  12. Energy storage, P2G
  13. Liquefied natural gas
  14. Smart energy systems

Exercise

13 hod., compulsory

Teacher / Lecturer

Syllabus


502/5000
1. Basic concepts
2. Nuclear fuel and waste issues.

4. Specifics of individual types of nuclear reactors.
5. Calculation of critical reactor size and composition.
6. Thermal and hydraulic calculations of the reactor.
7. Thermal and technological diagrams of nuclear power plants.
8. Parameters of heat pumps
9. Heat pump installation design.
9. Calculation of steam accumulator.
10. Absorption cycles.
11. Condensing heat exchangers.
12. Thermoelectric generator.
13. Power-to-gas technology.