Přístupnostní navigace
E-application
Search Search Close
Course detail
FSI-QAMAcad. year: 2024/2025
The course deals with the following topics: The fundamental solution methods of dynamic systems of branch machines, vibrating systems of branch machines including matrix solution methods. Computer support of the dynamic systems solution. Approximate solution methods of dynamic systems. Dynamics of continuous systems - vibration of prismatic bars. MKP application in dynamics. Dynamics of vibrating transport and compacting.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Entry knowledge
Rules for evaluation and completion of the course
Aims
The aim of the course is to develop the existing knowledge of mechanics and apply it to the problems of building and transport machines. These problems are solved in the area of vibration, including computer support.The course is intended to extend student’s knowledge of technical mechanics. It is applied to real examples of the machines from the selected branch of study. Main objective is for students to acquire ability to identify the force effects in the mechanisms - when they are starting and braking, as well as ability to analyse and optimise vibrating effects in machines when using common calculating methods.
Study aids
HAMAD, Yehia. Rigid Body Dynamics. 1. Mansoura: Springer Nature Switzerland AG 2022, 2022. ISBN 978-3-030-96335-4.
DRESIG, Hans, Franz HOLZWEIßIG, Wolf GROSSKOPF a Sven ESCHE. Dynamics of machinery: theory and applications. Heidelberg: Springer, 2010, xi, 544 s. ISBN 978-3-540-89939-6.
GENTA, Giancarlo. Vibration dynamics and control. New York: Springer, 2008, xxiv, 855 s. : il. ISBN 978-0-387-79579-9.
Prerequisites and corequisites
Basic literature
Recommended reading
Elearning
Classification of course in study plans
specialization CZS , 1 year of study, winter semester, elective
Lecture
Teacher / Lecturer
Syllabus
1. Basic methods of solving dyn. system - release and reduction methods. 2. Application of variational principles of mechanics. Dynamic balance of working mechanisms of machines. Application of the Zhukovsky lever. 3. Equation of motion of a machine, Lagrange's equations of motion, application to discrete oscillating systems. 4. Oscillation. machine systems of the field - application of systems with 1 st. freedom. 5. Oscillation. machine systems of the field - soust. with 2 or more st. freedom. 6. Damped forced oscillation of systems with 2 or more st. freedom - damped dynamic damper 7. Matrix methods in the theory of linear systems with a finite number of degrees of freedom 8. Approximate methods of solving discrete and continuous dynamic systems. 9. Dynamics of vibrating transport and sorting - material movement along the vibrating chute. 10. Drive dynamics of vibrating conveyors, vibrating compaction.11. Computer support of the dynamic systems solution 12. Dynamics of continuous systems - vibration of prismatic bars13. FEM application in dynamics
Computer-assisted exercise
1. Dynamic balance of building and mobile machine, start-up2. Method of Zhukovsky lever, balanced dynamic force in the mechanism3. Design of balance wheel of machine with inconstant transmission4. Vibrations of lifting device, calculation of torsional absorber5. Solution of plane dynamic model of the machine6. Design of damped damper of vibration7. Solution of 3-D model of vibration feeder8. Application of Rayeigh method and method of matrix iteration 9. Calculation of transport speed of vibration conveyer10. Design optimization of a vibratory compactor11. Solution of systems of common, parameter and differential equations12. Solution of complicated systems by creating a macro-block13. Solution of plane framework by FEM