Course detail

Supporting Structures of Machines I

FSI-QN1Acad. year: 2024/2025

The course familiarises students with the theoretical basis of structural mechanics calculation methods applicable in the design of supporting structures of building and preparation machines and plants in transport and handling engineering. Its aim is for students to get a particular picture of the tension and deformation state of the arbitrary point of the supporting structure. The course addresses the problems of the structures deformations, statically indeterminate problems, moving loads of structures, solution of thin-walled bars, principles and applications of the final elements method in the field.

Language of instruction

Czech

Number of ECTS credits

3

Mode of study

Not applicable.

Entry knowledge

Successful completion of the course is conditional on the basic knowledge of technical mechanics, physics and higher mathematics.

Rules for evaluation and completion of the course

Students have to develop individual task consisting of graphic solutions of Cremona diagram and solution by force method.
Course-unit credit is awarded on condition of having attended the exercises actively and worked out assigned projects. Presence in the exercises is obligatory.

Aims

The aim of the course is to extend the existing knowledge of mechanics and apply it to the problems of supporting structures of building and transport machines, it includes computer support.
Calculation methods applicable in the design of supporting structures of building and preparation machines and plants in transport and handling engineering. Principles and applications of the final elements method in the field.

Study aids

Not applicable.

Prerequisites and corequisites

Basic literature

Russell C. Hibbeler: Structural Analysis (8th Edition), Prentice Hall 2011, ISBN 978-0132570534
Stephen P. Timoshenko; James M. Gere: Theory of Elastic Stability (Dover Civil and Mechanical Engineering) 2 edition, Dover Publications 2009; ISBN 978-0486472072

Recommended reading

R. W. Ogden: Non-Linear Elastic Deformations; Dover Publications (July 7, 1997); ISBN: 978-0486696485
Russell C. Hibbeler: Structural Analysis (8th Edition), Prentice Hall 2011, ISBN 978-0132570534

Elearning

Classification of course in study plans

  • Programme N-ADI-P Master's 1 year of study, winter semester, compulsory-optional

  • Programme C-AKR-P Lifelong learning

    specialization CZS , 1 year of study, winter semester, elective

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1. Revision of internal loads resulting effects for statically determinate bar systems.
2. Revision of internal loads resulting effects for statically determinate bar systems.
3. Methods of solution of trusses – Method of Sections.
4. Methods of solution of trusses – Method of Joints.
5. Cremona diagram.
6. Shape stability, buckling, tilting.
7. Shape stability, buckling, tilting.
8. Force method - statically determined structures.
9. Force method - statically indetermined structures.
10. Force method - statically indetermined structures.
11. Using symmetry.
12. Mobile loads on statically determined structures. Influence lines.
13. Mobile loads on statically determined structures. Influence lines.

Computer-assisted exercise

13 hod., compulsory

Teacher / Lecturer

Syllabus

1. Revision of internal loads resulting effects for statically determinate bar systems.
2. Revision of internal loads resulting effects for statically determinate bar systems.
3. Method of Sections.
4. Method of Joints.
5. Cremona diagram.
6. Cremona diagram.
7. Shape stability, buckling, tilting.
8. Force method - statically determined structures.
9. Force method - statically indetermined structures.
10. Force method.
11. Using symmetry.
12. Mobile loads on statically determined structures. Influence lines.
13. Mobile loads on statically determined structures. Influence lines.

Elearning