Course detail

Control of Mechatronic Systems

FSI-RRMAcad. year: 2024/2025

Control theory of linear discrete systems, Z-transform, transfer functions, feedback systems, stability of feedback systems, design of digital controllers, discrete state feedback control, discrete state feedback control with an observer, discrete state feedback control with disturbing compensation, implementation of discrete algorithms in microcomputers, examples of control of mechatronic systems (NC machines, robots).

Language of instruction

Czech

Number of ECTS credits

2

Mode of study

Not applicable.

Entry knowledge

Linear differential equations, matrix calculus, principles of electrical engineering, mechanics, electrical servodrives

Rules for evaluation and completion of the course

The course-unit credit is awarded on condition of having to elaborated given problems. Individual solution is expected applying program MATLAB/SIMULINK. Examination has a written and an oral part.
Attendance at practical training is obligatory.

Aims

The goal of the subject is to provide students with basic knowledge of control theory of dynamical systems and its application to control mechatronic and robotic systems by a feedback controller.
Acquired knowledge enables students to solve dynamic systems in the time domain as well as in the frequency domain, to design feedback controllers with a prescribed behavior of the closed loop, application for a position control of servodrives for NC machines and robots

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Ogata, K.: Modern Control Engineering, Prentice Hall,1997
Philips, Ch. a j.: Digital Control System Analysis and Design, Prentice Hall, 1995
Zboray, L. a j.: Stavové riadenie el. pohonov, FEI KOšice, 1995

Recommended reading

Kotek, Z., a j.: Teorie automatického řízení spojitých lineárních systémů,ČVUT Praha, 1977
Skalický, J.: Teorie řízení 1, skripta VUT FEKT, 2002
Vavřín, P.:: Teorie automatického řízení 1, skripta VUT FEI, 1991

Classification of course in study plans

  • Programme N-MET-P Master's 1 year of study, summer semester, elective

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

1. Introduction, dynamic systems, mathematical models
2. State space representation of dynamic systems, the meaning of eigenvalues of A matrix
3. Transfer functions, frequency response, time response
4. Block diagrams of control systems
5. Feedback systems, stability
6. Types of controllers
7. Design of feedback systems,
8. State feedback control
9. State feedback control with an observer
10.Digital control systems
11.Discrete control theory, Z-transform
12.Design method of numeric controllers
13.Discrete state control

Laboratory exercise

39 hod., compulsory

Teacher / Lecturer

Syllabus

Laboratory exercises with MATLAB
1. Analysis of dynamic systems, mechanic and electromechanic systems
2. State equations, solution of state equations, SIMULINK models
3. Derive of transfer functions and frequency responses
4. Miniproject: feed drive: block diagram, system analysis
5. Miniproject: design of speed- and position controllers
6. Miniproject: simulation of dynamic behaviour, interpolation in the plane
7. Control of systems with elastic coupling, state controller
8. Control of systems with elastic coupling, state controller with an observer
9. Design of a discrete PID controller
10.Design of a state controller with an observer
11.Design of a "dead beat" discrete controller
12. Structures of control systems, hardware, software
13. Course-unit credit