Course detail
Design of Instruments and Optomechanics II
FSI-TK2Acad. year: 2024/2025
The course acquaints students with advanced design solutions of optomechanical instruments. Special attention is paid to microscope systems, interference and holographic instruments, devices for spectroscopy and systems for scatterometry. Students will be acquainted with design solutions of these optical systems and devices so that they are able to design optical instruments based on knowledge of principles.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Entry knowledge
Rules for evaluation and completion of the course
Exam: written.
Attendance at seminars is obligatory and is monitored by the teacher. The way of compensating missed lessons will be determined by the teacher based on the extent and content of missed lessons.
Aims
This course enables students to acquire knowledge of the design of advanced optomechanical instruments and devices with respect to the correct mechanical and optical functionality. Students will be systematically acquainted with advanced optical instruments, their construction, adjustment and overall approach to this field, so that they can design these instruments.
Study aids
Prerequisites and corequisites
Basic literature
Glézl, Š.-Kamarád, J.-Slimák, I.: Presná mechanika
Harna, Z.: Přesná mechanika.
Havelka, B.: Geometrická optika II
Keprt, E.: Teorie optických přístrojů I,II
TÖRÖK, Peter; KAO, Fu-Jen (ed.). Optical imaging and microscopy: techniques and advanced systems. Springer, 2007.
Tryliński, W.: Fine mechanisms and precision instruments: principles of design. Pergamon, 1971.
Van Hell,AC.s.: Advanced Optical Techniques
Wilson T. (1994) Confocal Microscopy. In: Yacobi B.G., Holt D.B., Kazmerski L.L. (eds) Microanalysis of Solids. Springer, Boston, MA
Yoder, P.: Mounting optics in optical instruments, SPIE Bellingham, 2008
Recommended reading
Harna, Z.: Přesná mechanika.
Keprt, E.: Teorie optických přístrojů I,II
TÖRÖK, Peter; KAO, Fu-Jen (ed.). Optical imaging and microscopy: techniques and advanced systems. Springer, 2007.
Wilson T. (1994) Confocal Microscopy. In: Yacobi B.G., Holt D.B., Kazmerski L.L. (eds) Microanalysis of Solids. Springer, Boston, MA
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Light microscope, design of the imaging part
3. Fluorescence microscopy, design of fluorescence module
4. Confocal microscope with a laser source, and its design, scanning systems
5. Interference microscopes and their selected designs
6. Holographic microscopes and their selected designs
7. Interference and holographic modules, their selected designs
8. Advanced microscope systems
9. Spectroscopes and their selected designs
10. Optomechanics in assemblies for laser ablation
11. Imaging spectroscopic reflectometer, its design, function, and using
12. Scatterometer, its design, function, and using
Computer-assisted exercise
Teacher / Lecturer
Syllabus