Course detail
Surface and Thin Films
FSI-T1T-AAcad. year: 2024/2025
This course is the introduction to series of courses engaged in study of physical problems of two dimensional structures surfaces, interfaces and thin films. Introduction of course is give up to problematic of clean surface: technology for preparation of surfaces and interfaces, its morphology and structure, brief description of two dimensional lattice vibration and electron structure of surface. Following part pay the attention to interaction between surface (interface) and surrounding medium and responsive changes of their physical properties: scattering of particles on solid state surface, kinetics and dynamics of elementary processes on surface (interface) adsorption, diffusion, desorption and sputtering. Last part talks about reactions on solid state surface (heterogenic catalysis), mechanics of thin film growth, properties and applications of thin films (except optical properties).
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Offered to foreign students
Entry knowledge
Rules for evaluation and completion of the course
The presence of students at the practice is monitored by a tutor. The way how to compensate missed practice lessons will be decided by a tutor.
Aims
Students will get knowledge on fundamental phenomena at solid surfaces during thin film growth and on principal analytical methods of surfaces and thin films.
Study aids
Prerequisites and corequisites
Basic literature
LUTH, T.: Surface and Interfaces of Solids,
ZANGWILL, A.: Physics at Surfaces,
Recommended reading
FELDMAN, L.C.: Fundamentals of the Surface Analysis,
LUTH, T.: Surface and Interfaces of Solids,
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
II. Preparation of surfaces and interfaces of defined properties. Ultimate condition ; ultrahigh vacuum (UHV), methods of preparation (cleaving or breaking under UHV, ion bombardment and annealing of a sample, evaporation and molecular beam epitaxy (MBE), epitaxy by chemical reactions and other methods), monitoring of surface quality.
III. Morphology and structure of surfaces and interfaces: Surface tension and macroscopic shape, relaxation, reconstruction and defects, phase transitions, 2D-lattice, superstructure and reciprocal lattice, structural models of solid state interfaces.
IV. Vibration of 2D lattices and surface electronic structure: elementary excitations, work function and methods of its measurement, surface states and the bending of bands at surfaces and interfaces.
V. Scattering at a solid state surface: Kinematic theory of scattering at solid state surface, classical limit of theory of scattering.
VI. Interaction of surfaces/interfaces with surroundings: Physisorption, chemisorption, 2D-phase transitions, work function changes due to adsorption, energy transport on a solid state surface, kinetics and dynamics of elementary processes on a surface - adsorption, diffusion, desorption, sputtering.
VII. Surface reactions and thin film growth: catalysis, nucleation and growth of thin films, in situ study of thin film growth. Properties of thin films.
VIII. Mechanical properties, electrical and magnetic properties (optical properties).
IX. Application of thin films: Improvement of mechanical properties and material protection, application of thin films in electronics and microelectronics, applications in optics, optoelectronics and integrated optics.
Exercise
Teacher / Lecturer
Syllabus
Panel II: EELS
Panel III: XPS/UPS
Panel IV: LEED/RHEED.
Panel V: RBS/LEIS.
Panel VI: Analýza založená na desorbci plynů z povrchu.
Panel VII: SEM a STM/AFM.
Panel VIII: SEXATS.
Elearning