Course detail

Introduction to the Materials Physics

FSI-WUFAcad. year: 2024/2025

The purpose of the course „Introduction to physics of materials“ is to give to students necessary theoretical basis for solution problems in materials engineering. The main issues of the course are fundamental physicallaws governing the properties and manufacturing processes of the materials. Beside the metallic materials, it covers also basics of ceramics and polymers, their properties and processing. In this way, it creates cross-disciplinary bonds between various types of material.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Entry knowledge

The course continue knowledges from atomic composition field, chemical thermodynamic, electrochemistry, crystalline composition of metals, equilibrium and disequilibrium phase transformations focused on metal systems, deformation and fracture behaviour of materials and knowledge of structure and properties of basic groups of metalic and nonmetalic materials

Rules for evaluation and completion of the course

Students have to take part in all practices, to give over all protocols of laboratory practices, which have to meet commensurate scientific and graphic level. Students have to elaborate final semestral thesis which will be included in the exam classification. Knowledges of given topics are to be chcked at the exam mainly by written form. List of topics will be notified to students at the beginning of the course. At the verbal part of the exam students will answer questions for other knowledges verification. Final classification includes: protocols evaluation, final thesis evaluation and results of the written and verbal parts of the exam.
Participation in practices is mandatory, must be properly excused absence. Attendance in practices will be checked, non-participation have to be duly excused. Basic credit conditions is continuous giving over protocols. Knowledges of lectured topics will be checked by short tests. In the case of sick leave in practice given topic will be supplied by individual submission.

Aims

The aim of this course is to notify students of inner structure of real crystalic and amorphous materials (metals, ceramics, polymers) and of the influence of defects interactions on their application properties and manufacturing processes.The task os this course is to give knowledges about relationship among phase composition, transformations, mechanical and other properties of the material.


This course allows students to obtain knowledges about inner structure of materials and about thermodynamics and kinetics of processes during material's manufacturing and use. Students get knowledges about relations between microstructure and properties of materials.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

ANDERSON, J. C. Materials science for engineers. 5th ed. Cheltenham: Nelson Thornes, 2003, 664 s. ISBN 0748763651. (EN)
CALLISTER, William D. a David G. RETHWISCH. Materials science and engi neering: an introduction. 8th ed. Hoboken: Wiley, 2010, 885 s. ISBN 978-0-470-41997-7. (EN)
JONES, David R. H. a Michael F. ASHBY. Engineering Materials 1: An Introduction to Properties, Applications and Design. 4. Elsevier Science, 2011. ISBN0080966659. (EN)
JONES, David R. H. a Michael F. ASHBY. Engineering Materials 2: An Introduction to Microstructures and Processing. 4. Elsevier Science, 2012. ISBN 0080966683. (EN)
MUNZ, Dietrich a Theo FETT. Ceramics: mechanical properties, failure behaviour, materials selection. Berlin: Springer-Verlag, 1999, 298 s. ISBN 3-540-65376-7. (EN)
SMALLMAN, Raymond E. Modern physical metallurgy. Elsevier, 2016, 544 s. ISBN 9781483105970. (EN)
TROLIER-MCKINSTRY, Susan a Robert E. NEWNHAM. Materials engineering: bonding, structure, and structure-property relationships. Cambridge: Cambridge University Press, 2019, 618 s. ISBN 978-1-107-10378-8. (EN)

Recommended reading

ASKELAND, Donald R. a Pradeep P. PHULÉ. Science and engineering of materials. 4th ed. Pacific Grove: Books/Cole-Thomson Learning, 2003, 1003 s. ISBN 0534953735. (EN)
KRATOCHVÍL, Petr, P. LUKÁČ a B. SPRUŠIL. Úvod do fyziky kovů I. Praha: SNTL, 1984, 243 s. (CS)
LEJČEK, Pavel a Pavel NOVÁK: Fyzika kovů, VŠCHT Praha, 2008, 162 s. (CS)
MÜNSTEROVÁ, Eva. Fyzikální metalurgie a mezní stavy materiálu: doplňková skripta a návody do cvičení. Brno: Vysoké učení technické, 1989, 208 s. (CS)
PLUHAŘ, Jaroslav. Fyzikální metalurgie a mezní stavy materiálu. Praha: Bratislava: SNTL; Alfa, 1987, 418 s. (CS)
PTÁČEK, Luděk. Nauka o materiálu. I. 2. opr. a rozš. vyd. Brno: Akademické nakladatelství CERM, 2003, 516 s. ISBN 80-7204-283-1. (CS)
PTÁČEK, Luděk. Nauka o materiálu II. 2., opr. a rozš. vyd. Brno: CERM, 2002, 392 s. ISBN 80-7204-248-3. (CS)

Classification of course in study plans

  • Programme B-ZSI-P Bachelor's

    specialization MTI , 2 year of study, summer semester, compulsory

  • Programme C-AKR-P Lifelong learning

    specialization CLS , 1 year of study, summer semester, elective

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

1. Elements and their properties. Types of interatomic bonds
2. Inner arrangement of metallic and non-metallic materials
3. Electron theory of metals and its application – electrical conductivity, magnetism, cohesion.
4. Imperfections of inner structure of materials, their exhibitions and importance
5. Thermodynamics of chemical elements, pure materials, solutions and intermediary phases
6. Kinetics of phase transformations
7. Crystallization of metals and alloys
8. Diffusion and no diffusion transformations in metal systems
9. Thermal, electrical and magnetic properties of matters

Laboratory exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

1. Structure of atoms
2. Crystal structures – basic structures, Miller indices of directions and planes, multiple structures
3. Thermodynamics of pure materials
4. Thermodynamics of solutions
5. Enthalpy diagrams for common equilibrium phase diagrams
6. Enthalpy diagrams for Fe – C system
7. Formation of proeutectoid ferrite
8. Construction of kinetic diagrams
9. Quantitative methods of classification material structure and their utilization in thermodynamics
10. Determination of Gibb’s energy of austenite grain growth
11. Diffusion I – solving of the basic problems
12. Diffusivity of carbon during cementation // Carbon diffusivity during cementation
13. Advanced plastics