Course detail

Electronic Devices

FEKT-BKC-ESOTAcad. year: 2024/2025

Semiconductors physics. PN-junction. Semiconductor Diode. Bipolar junction transistors. Field effect transistors. Power electronic devices - thyristor, TRIAC, DIAC, IGBT transistor. Optoelectronic devices. Passive components.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Entry knowledge

The subject knowledge on the secondary school level is required.

Rules for evaluation and completion of the course

Numerical exercises, TEST 1 - 10 points; minimum 6 points.
Numerical exercises, TEST 2 - 10 points; point limit not set.
Laboratory exercises: 30 points; minimum 20 points
Final exam - 50 points; minimum 25 points.


Laboratory practicum. Numerical practicum.

Aims

Based on the verification of the student's knowledge and skills in seminars, laboratory work and in the written exam, after completing the course the student is able to:

Describe in detail the mechanisms that affect the PN junction at steady state and in forward and reverse polarization.
Define the barrier and diffusion capacitance of the PN junction.
Explain the operation of PN junction in following circuits: Rectifier, voltage stabilizer, capacitance diode, photo-diode, light emitting diode (LED) and current controlled differential resistance.
Define and explain breakdown mechanisms of PN junction: Tunnel-breakdown, avalanche-breakdown, thermal- breakdown and surface- breakdown.
Describe the structure of the bipolar transistor and explain its operation.
Design and analyze class-A-amplifier and switch with bipolar transistor.
Describe the structure of unipolar transistors JFET and IGFET and explain their operation.
Design and analyze class-A-amplifier and switch with unipolar transistors JFET and IGFET.
Describe the structure of a thyristor and its equivalent circuit and explain its operation.
Describe the structure of the triac and explain its operation.
Define the principle of phase-angel control of power switching devices.
Design and explain typical wiring-diagrams of thyristor and triac.
Define and explain mechanisms of electron emission in vacuum.
Explain the operation of the most important vacuum-tubes (triode, tetrode, pentode, planar triode, magnetron and klystron).
Define parasitic properties of commonly used resistors and explain the impact of used materials and design to formation or suppression of these parasitic properties.
Define parasitic properties of commonly used capacitors and explain the impact of used materials and design to formation or suppression of these parasitic properties.
Define parasitic properties of commonly used inductors and explain the impact of used materials and design to formation or suppression of these parasitic properties.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Boušek J., Kosina P.: Elektronické součástky BESO, laboratorní cvičení, FEKT VUT V BRNĚ, elektronické skriptum
Boušek J., Kosina P., Mojrova B.: Elektronické součástky, FEKT VUT V BRNĚ, elektronické skriptum
Boušek J., Kosina P., Mojrova B.: Elektronické součástky sbírka příkladů, FEKT VUT V BRNĚ, elektronické skriptum
Boylestad R., Nashelsky L. :Electronic devices and Circuit Theory ,Prentice Hall
MUSIL V., BRZOBOHATÝ J., BOUŠEK J, PRCHALOVÁ I.: " Elektronické součástky", PC dir, BRNO, 1999
Singh J. : Semiconductor Devices ,McGraw-Hill

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme BKC-EKT Bachelor's 1 year of study, summer semester, compulsory
  • Programme BKC-TLI Bachelor's 1 year of study, summer semester, compulsory

Type of course unit

 

Lecture

13 hod., optionally

Teacher / Lecturer

Fundamentals seminar

13 hod., compulsory

Teacher / Lecturer

Laboratory exercise

26 hod., compulsory

Teacher / Lecturer