Course detail
Electrical Engineering 2
FEKT-BPC-EL2Acad. year: 2024/2025
The course deals with the basics of electrical engineering and extends the knowledge obtained in the course Electrical Engineering1. At the beginning of the course are discussed universal and special methods of analysis of linear circuits in harmonic steady state, including the polyphase circuits. In the next section, students learn about the characteristics of RC, RL and RLC circuits. The following part explain classical and operator method of transient solution in linear circuits, students will learn how to determine the response of the circuit to the standard and arbitrary signals. The last part of the course is theory of homogeneous transmission lines.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Entry knowledge
- define the concepts of electrical resistance, capacitance and inductance;
- express in their own words the basic laws of electrical circuits and be able to explain the relationship between voltage and current at the fundamental elements R, L and C;
- use appropriate methods to analyze linear circuits;
- calculate the basic parameters of the time-varying signals;
- apply the methods of mathematical analysis calculations for systems of equations using matrix methods;
- use mathematics in the field of complex numbers;
- manage general calculate derivatives and integrals simple basic functions;
- calculate linear ordinary differential equations.
Work in the laboratory is subject to a valid "instructed person" qualification, which students must obtain before starting the course. Information on this qualification is provided in the Dean's Directive on Student Training in Safety Regulations.
Rules for evaluation and completion of the course
Attendance at laboratory classes is mandatory. Properly excused absences can be substituted, usually in the last week of the semester.
Aims
After completing the course student will be able to:
- define the terms in the field of circuit analysis in HUS as a phasor, complexor, impedance, admittance, etc., and to analyze linear electrical circuits in harmonic steady state;
- list the primary and secondary line parameters and explain the propagation of waves on transmission lines in the steady state and the transient;
- explain the behavior of RLC circuits, meaning of resonance response of the circuit;
- discuss the importance of three-phase distribution systems and distinguish the concepts associated with it;
- apply the Laplace transform to solve transients in linear circuits;
- calculate the response of a linear circuit on the basic input signals.
Study aids
Prerequisites and corequisites
Basic literature
SEDLÁČEK, J.; MURINA, M.; STEINBAUER, M.; KROUTILOVÁ, E. Elektrotechnika 2 - laboratorní a počítačová cvičení. BRNO, Ing. Zdeněk Novotný, CSc., Ondráčkova 105, 628 00 Brno. 2008. p. 1 - 160. ISBN 978-80-214-3575-9. (CS)
Recommended reading
Elearning
Classification of course in study plans
- Programme BPC-AMT Bachelor's 1 year of study, summer semester, compulsory
- Programme BPC-AUD Bachelor's
specialization AUDB-TECH , 1 year of study, summer semester, compulsory
- Programme BPC-ECT Bachelor's 1 year of study, summer semester, compulsory
- Programme BPC-MET Bachelor's 1 year of study, summer semester, compulsory
- Programme BPC-SEE Bachelor's 1 year of study, summer semester, compulsory
- Programme BPC-TLI Bachelor's 1 year of study, summer semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
1. Harmonic quantities in electrical networks. Phasors
2. Symbolic method for simulation of linear networks in harmonic steady state. Power in HSS
3. Method of equivalent source,loop current method (LCM), nodal voltag method (NVM) in HSS
4. Three-phase systems. Power in three-phase systems
5. Analysis of three-phase systems
6. Properties of basic linear passive RC, RL networks
7. Resonant circuits
8. Transients in linear networks of 1st and 2nd-order
9. Operator method for solution of transients in linear networks
10. Step and impulse responses of a linear network
11. Transmission lines, primary and secondary parameters. Transient phenomena in transmission lines
12. Transmission lines in HSS, waves on TL, applications of TL
13. Reserve, exam preparation
Laboratory exercise
Teacher / Lecturer
Syllabus
1 A Impedances
2 A Harmonic steady state circuit analysis
3 A Power in single-phase circuit
4 A Phasor diagrams
5 A Three-phase system
6 A Power in a three-phase system
7 A Basic characteristics of RC and CR two-ports
1 B Series resonant circuit
2 B Parallel resonant circuit
3 B Transients in RC and RLC circuits
4 B Analysis of non-harmonic signals
5 B Wave propagation on a homogeneous transmission line
6 B Transients on homogeneous transmission lines
7 B Measurements on a fluorescent tube
Fundamentals seminar
Teacher / Lecturer
Syllabus
1. Complex numbers - basic operations, phasors. Introduction to symbolic method of linear circuit analysis
2. Loop current method (LCM), nodal voltage method (NVM). Method of equivalent source, phasor diagrams
3. Three-phase circuits, power in three-phase circuits. Written test no. 1
4. Basic passive linear two-ports networks. Resonant circuits. Written test no. 2
5. Transients in linear circuits. Transients with non-zero initial conditions. Transient and impulse response of a linear circuit
6. Homogeneous transmission lines. Written test no. 2
Elearning