Course detail

Control Theory 2

FEKT-BPC-RR2Acad. year: 2024/2025

Analysis and synthesis of advanced control systems, especially nonlinear, is discussed in this course. Basic methods for nonlinear systems stability analysis, state trajectory behaviour evaluation and nonlinear control design are presented. Methods for robust control design and system parameters estimation are also described.

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Entry knowledge

The subject knowledge on the secondary school level is required. Knowledge of linear systems control (BPC-RR1) and systems modeling (BPC-MOD) is assumed.

Rules for evaluation and completion of the course

70 points written exam
30 points projects and tests done on seminars
Conditions for awarding the course-unit credit:
1. Active participation in exercises
2. Minimum of 10 points awarded for tests at exercises
The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Aims

Linear system control knowledge improvement. Learning of basic methods of nonlinear systems analysis and synthesis. Nonlinear systems control design, linearization, exact linearization, robust control.
Student can:
- analyse nonlinear systems behaviour
- design nonlinear control systems
- analyse stability of nonlinear dynamical systems
- design control algorithms based on linearisation techniques
- design control structures based on relay control and sliding mode control

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

ŠOLC, F.; VÁCLAVEK, P.; VAVŘÍN, P. Řízení a regulace II. Brno: VUT, 2004. s. 1 ( s.) (CS)

Recommended reading

Khalil, H.K.: Nonlinear Systems. Prentice Hall, 2001. (EN)
Kotek, Kubík,:Teorie automatického řízení II. (CS)
Razím, M., Štecha, J.: Nelineární systémy, ČVUT 1997 (CS)
Slotine, J., Weiping, L.: Applied Nonlinear Control. Pearson Education, 1990. (EN)

Classification of course in study plans

  • Programme BPC-AMT Bachelor's 3 year of study, summer semester, compulsory
  • Programme BIT Bachelor's 3 year of study, summer semester, elective
  • Programme BIT Bachelor's 3 year of study, summer semester, elective

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1 Nonlinear systems description, basic nonlinearities, linearization.
2 Nonlinear systems state trajectories, equilibrium points.
3 State trajectory of the first and second order systems.
4 Phase trajectory, time computing using phase trajectory, limit cycle existence determination using index theorems.
5 Describing function method, harmonic balance method.
6 Nonlinear systems stability.
7 Nonlinear systems stability analysis using Lyapunov method.
8 Popovov's stability criterion, instability theorems. Nonlinear systems control using linear controllers, wind-up.
9 Nonlinear systems control - gain scheduling, exact feedback linearization.
10 Relay control systems, switched structure systems, time optimal relay control. Nonlinear systems solution existence.
11 Sliding mode control.
12 Identification of controlled plants parameters.
13 Summary.

Fundamentals seminar

13 hod., optionally

Teacher / Lecturer

Syllabus

1 State trajectories, isoclines method, linearization.
2 Describing functions, harmonic balance method.
3 Lyapunov stability.
4 Popov stability criteria. Non-linear systems control – gain scheduling, feedback linearization.
5 Relay controllers.
6 Sliding mode control
7 Summary

Exercise in computer lab

13 hod., optionally

Teacher / Lecturer

Syllabus

1 State equations, discrete controllers
2 Non-linear systems state trajectories, limit cycles, equilibrium states
3 Harmonic balance method, measurement of parameters for Ziegler-Nichols method using relay feedback experiment
4 Wind-up, exercise on BLDC motor
5 Linear control of non-linear systems, gain scheduling, feedback linearization
6 Sliding mode control, relay approximation