Přístupnostní navigace
E-application
Search Search Close
Course detail
FEKT-MKC-PSOAcad. year: 2024/2025
The course focuses on consolidating and expanding students' knowledge of probability theory, mathematical statistics and theory of selected methods of operations research. Thus it begins with a thorough and correct introduction of probability and its basic properties. Then we define a random variable, its numerical characteristics and distribution. On this basis we then build descriptive statistics and statistical hypothesis testing problem, the choice of the appropriate test and explanation of conclusions and findings of tests. In operational research we discuss linear programming and its geometric and algebraic solutions, transportation and assignment problem, and an overview of the dynamic and probabilistic programming methods and inventories. In this section the illustrative examples are taken primarily from economics.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Entry knowledge
Rules for evaluation and completion of the course
Aims
Study aids
Prerequisites and corequisites
Basic literature
Recommended reading
Elearning
Classification of course in study plans
Lecture
Teacher / Lecturer
Syllabus
2. Statistika, odhady parametrů, t-test.
3. Analýza rozptylu, jedno- i dvou-faktorová.
4. Korelační přístup, regresní přímka.
5. Po nalýze rozptylu a nebo místo ní.
6. Rozdělení "chí kvadrát" a jeho aplikacxe.
7. Neparametrické testy.
8. Lineární programování, simplexová metoda.
9. Dualita v lineárnímprogramování.
10. Dopravní a přiřazovací úloha.
11. Dynamické programování.
12. Modely skladových zásob.
13. Pravděpodobnostní dynamické programování.
Computer-assisted exercise
2. Statistics, parameter estimates, t-test.
3. Analysis of diffusion, one-and two-factor.
4. Correlation approach, regression line.
5. After the spread of dispersion and/or the place of it.
6. Splitting " chi-square " and its application.
7. Non-parametric tests.
8. Linear programming, simplex method.
9. Duality in linearing programming.
10. Traffic and assignment task.
11. Dynamic programming.
12. Stock models.
13. Probability dynamic programming.