Přístupnostní navigace
E-application
Search Search Close
Course detail
FCH-MC_KOV1Acad. year: 2024/2025
Ferrous metals, advantages and disadvantages of metallic materials, basic material characteristics, steel production. Non-ferrous metals and corrosion, non-ferrous metals overview, corrosion resistance vs. non-ferrous metals chemical reactivity, types of corrosion and corrosion protection. Metal bond and lattice - comparison of bond types, properties of metal bond, arrangement of atoms in crystal lattice, lattice defects, reinforcement by grain boundaries. State of matter, thermodynamics, kinetics, diffusion, phases - laws describing processes in metal materials, diffusion utilization, phase rule, character of crystalline structure. Equilibrium phase diagrams - dendrites, relationship between equilibrium diagrams and properties of alloys. Phase diagram of Fe-Fe3C - metastable Fe-Fe3C system, polymorphism, solid solutions, structural mixtures, influence of carbon content on mechanical properties of Fe-Fe3C. Heat and mechanical processing of metals - steel forging, methods of heat treatment of steel and cast iron, precipitation decay, austenitization, TTT diagrams, influence of alloys on steel properties. Basic types of steels and their marking - ČSN EN 10020 standard, accompanying and additive elements, carbide-forming, graphite-forming, austenite-forming and ferrite-forming elements, practical division of steels. Corrosion and surface treatments - material degradation, chemical reactivity vs corrosion resistance, Pourbaix diagram, electrochemical protection. Non-ferrous metals - Al, Cu, Zn, Mg, Ni, Ti, low-melting and high-melting metals, noble metals. Lecture from an expert in the field of metals - metals, surface treatments, technological processes, heat treatment, joining of metallic materials, etc. Examples from practical analyzes from contractual research conducted at the Faculty of Chemistry, Brno University of Technology. Repetition of the curriculum and discussion of the reason for the use and necessity of metallic materials.Laboratory exercise: Introductory lesson, laboratory rules, safety at work, introduction to instruments. Tensile strength - determination of tensile strength of ferrous and non-ferrous alloys. Methods of sampling and preparation of samples for metallographic evaluation. Preparation of metallographic samples - grinding, polishing, etching. Light microscopy - observation of microstructure. Scanning electron microscopy with energy dispersive spectrometer - observation of microstructure and determination of elemental composition. Mechanical properties - hardness. Determination of corrosion resistance and speed. Surface treatment of metallic materials. Electrochemistry - potentiodynamic curves. Heat treatment of metals - hardening, annealing. Free week to compensate for holidays or excused absence. Final exam. Presentation of results obtained during the whole practice.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Entry knowledge
Rules for evaluation and completion of the course
Aims
Study aids
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Lecture
Teacher / Lecturer
Syllabus
Guided consultation in combined form of studies
Laboratory exercise