Course detail

Members of Metal Structures

FAST-BOA002Acad. year: 2024/2025

Basics of metal bearing structure design and realization problems. Advantages and disadvantages of steel structures, situation and prospects in the branch.
Material and selection of structural members.
Principles and rules of reliability approach in steel structures, allowable and ultimate limit state design methods. Probabilistic approach in steel structures.
Geometric and static characteristics of open and closed cross-sections of thin-walled steel members.
Connections of metal structures – principles of structural design (bolted, frictional and welded connections).
Tensile members. Bending – elastic and plastic action.
Simple and warping torsion of thin-walled open and closed cross-section members.
Stability and buckling resistance of compression members of solid and composed section.
Lateral buckling.
Members subject to tension and bending, compression and bending stress.
Global and local stability problems. Load-bearing capacity of thin-walled members.
Repeated load resistance of steel structures. Factors affecting steel fatigue strength.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Department

Institute of Metal and Timber Structures (KDK)

Offered to foreign students

Of all faculties

Entry knowledge

Basics of university mathematics, physics and chemistry, statics, strength and plasticity, section characteristics, design principles of structures and traffic constructions, loading of structural systems.

Rules for evaluation and completion of the course

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Aims

The objective of the subject is to introduce students to the problems of this course and to practise acquires knowledge and skills.
Student will learn and get under control the aims of matter in
teachings, focused to problems of elements of metal structures, in term of content amplificated more in detail in the schedule of related training subject.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Bujňák, J., Nikolic, R., Djokovic, J. Steel Structures - Collection of Solved Problems with Excerpts from Theory, University of Žilina, Faculty of Civil Engineering, Žilina 2011, 186 s. ISBN 978-80-554-0404-2. (EN)
ESDEP - European Steel Design Education Programme, SCI,  London, CD ROM. (EN)
Faltus, F. Prvky ocelových konstrukcí, ČSAV Praha, 1962, 695 s. (CS)
Ferjenčík, P., Schun, J., Melcher, J., Voříšek, V., Chladný, E. Navrhovanie oceľových konsštrukcií, 1. časť, ALFA Praha / SNTL Bratislava, 1986, 616 s. (SK)
Pilgr, M. Kovové konstrukce. Podklady pro navrhování prvků ocelových konstrukcí, CERM Brno, 2018, 700 s. (CS)
Voříšek, V., Chladný, E. Melcher, J. Prvky kovových konstrukcí, ALFA Bratislava / SNTL Praha, 1983, 544 s. (SK)

Recommended reading

Aktuálně platné normativní dokumenty související s obsahem předmětu (CS)
Bujňák, J., Vičan, J. Navrhovanie oceľových konštrukcií, ŽA v Žiline, 2012, 191 s. ISBN 978-80-554-0529-2. (SK)
Melcher, J., Bajer, M., Karmazínová, M., Sýkora, K. Prvky kovových konstrukcí, studijní opory, FAST VUT, 2008. (CS)

Classification of course in study plans

  • Programme BPC-SI Bachelor's

    specialization VS , 2 year of study, summer semester, compulsory

  • Programme BPC-MI Bachelor's 2 year of study, summer semester, compulsory
  • Programme BKC-SI Bachelor's 2 year of study, summer semester, compulsory
  • Programme BPA-SI Bachelor's 2 year of study, summer semester, compulsory

  • Programme CZV1-AKR Lifelong learning

    specialization PBC , 1 year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1. Introduction to problems of the design and realization of steel load-bearing structures. Advantages and disadvantages of steel structures, situation and perspective of branch development. 2. Materials and assortment of structural elements. 3. Principles and rules of steel structures reliability, method of allowable stress and limit state design method. Design of steel structures with use of probability approach. 4. Geometric and static characteristics of ope nand closed thin-walled cross-sections of steel structures members. 5. Bolted joints and frictional joints. 6. Fillet welds.Butt welds, plug welds, slott welds. 7. Tension members. Bending of beams - elastic and elastically-plastic action. 8. Saint-Vénant torsion and mixed torsion of thin-walled members with open and closed cross-section. 9. Buckling resistance of compression members with compact and built-up section. 10. Lateral-torsional buckling of girders in bending. 11. Members in bending and tension, and under bending and compression. 12. Load-bearing capacity of thin-walled cross-sections. Critical and post-critical load-bearing capacity of a plain girders with thin walls. Resistance of steel structures to the action of repeated load. Factors which influence pulsating fatigue limit of steel structures.

Exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

1. Introduction to problems of the design and realization of steel load-bearing structures. Loading of building structures. 2. Materials and assortment of structural elements.Method of allowable stress and limit state design method. Design of steel structures with use of probability approach. 3. Geometric and static characteristics of open and closed thin-walled cross-sections of steel structures members. 4. Bolted joints and frictional joints. 5. Fillet welds. Butt welds, plug welds, slot welds. 6. Tension members. Bending of beams - elastic and elastically-plastic action. 7. Saint-Vénant torsion and mixed torsion of thin-walled members with open and closed cross-section. 8. Buckling resistance of compression members with compact section. 9. Buckling resistance of compression members with built-up section. 10. Lateral-torsional buckling of girders in bending. 11. Members in bending and tension, and under bending and compression. 12. Load-bearing capacity of thin-walled cross-sections.