Přístupnostní navigace
E-application
Search Search Close
Course detail
FAST-BAA015Acad. year: 2024/2025
Orthogonal axonometry, skew axonometry, oblique projection. Linear perspective, basics of photogrammetry. Helix, right closed rule helicoidal surface. Surfaces of revolution . Warped surfaces. Lighting. Teoretical designs of roofs.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Entry knowledge
Construction of conics using their focal properties.Perspective collineation, perspectoive affinity, affine image of a circle.
Rules for evaluation and completion of the course
Students have to pass two credit tests, submit two drawings and other homework, 100% of attendance.Followed by an exam with a pass rate of at least 50%.
Aims
After the course the students should understand and know how to use the basics of Monge projection, orthogonal axonometry, skew projection, and linear perspective.
Students should be able to construct conics using their focus properties, basics of stereometry, perspective colineation and affinity. Understand and get the basics of projection: Monge`s projection, axonometry and linear perspective. They should be able to solve simple 3D problems, display the basic geometric bodies and surfaces in each projection, their section. Students should be able to draw an object in a linear perspective. They construct a helix using specified elements, an orthogonal closed rule right helicoidal surface, circle and parabolic conoid, arcs.
Study aids
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
specialization PBC , 1 year of study, winter semester, compulsory
Lecture
Teacher / Lecturer
Syllabus
1. Monge projection.
2. Monge projection of simple surfaces, their sections and intersections with a straight line.
3. Surfaces of revolution, thein tangent plane and plane sections.
4. Basics of lighting. Technical lighting.
5. Orthogonal axonometry.
6. Orthogonal axonometry.
7. Oblique projection.
8. Linear perspective projection.
9. Linear perspective projection.
10. Linear perspective projection.
11. Theoretical solution of roofs.
12. Higher order warped surfaces, arcs.
13. Helix, helicoidal conoid.
Exercise
2. Projections of a simple bodies and surfaces, their sections and intersections with a straight line.
3. Tangent plane of a surface of revolution, section of a surface of revolution.
4. Lighting, technical lighting.
5. Orthogonal axonometry. Metric problems in coordinate planes.
6. Orthogonal axonometry. Projections of simple bodies and surfaces, their sections and intersections with a straight line.
7. Projecting in oblique projection. Projection of a circle in a coordinate plane. Displaying simple bodies. Cutting method.
8. Linear perspective. Intersection method. Constructing a free perspective.
9. Linear perspective. Method of rotated ground plan. Other methods of projecting a perspective.
10. Linear perspective. Vertical picture. Reconstructing an object from a perpendicular picture.
11. Theoretical solutions of the roofs.
12. Higher-order warped surfaces.
13. Constructing a helix. Right helicoidal conoid. Credits.