Course detail

Color Science and Technology

FCH-BA_CSTAcad. year: 2024/2025

The course is meant to deliver the attendees theoretical knowledge in the subject of color science and technology. These two complex and complementary subject fields include the theory of light and radiation, human response to light, interaction of radiation and matter, influence of chemical composition of matter on its color and appearance, applied chemistry of colorants, basic principles of color reproduction, mathematical description and modelling of color etc. The course should explain the connection between the physico-chemical principles of material color and its technological application. A great deal of attention is paid to the description and modelling of human visual system and objective color measuring.

 

Language of instruction

English

Number of ECTS credits

5

Mode of study

Not applicable.

Offered to foreign students

Of all faculties

Entry knowledge

Knowledge of general basis subjects (mathematical analysis, physics, biology).
Knowledge of selected chapters of special subjects (organic and physical chemistry).

Rules for evaluation and completion of the course

The exam is oral. Students are expected to answers 3 questions. There is appr. 30 minutes preparation time during which students can compose written notes and schemes as a support for oral presentation. Extra bonus points (24%) can be awarded for the presentation of a voluntary homework set.
The attendance at the lectures is voluntary, by highly recommended.
Students can take the opportunity to write voluntary independent written homework. This homework set can be presented at the oral exam and it an be rewarded by an extra bonus grade improving the total grade.

Aims

The goal of this course is to give the students a detailed insight in the subject field of color science and technology. The attendees should acquire the knowledge of terminology, understand the basic theoretical principles and abstract concepts, learn about typical related applications and major technologies. In this way they should acquire knowledge and skills necessary for their further study as well as professional carreer.
The improvement of theoretical knowledge, understanding and competences will be manifested in the following ways:
1) Course attendees will acquire complex knowledge of human visual system anatomical structures and biochemical principles. Further, they will also undestand the psychologic and psychophysical aspects of visual reception.
2) Course attendees will learn about historical and present approaches to color catalogization and organization.
3) Students will understand how the way a compound interacts with radiation determines its technological application (i.e., colorant, brightener, sensitizer, absorber, scattering/screening agents).
4) Students will become familiar with the essential color matching experiment and will adopt the related theory of color matching functions, tristimulus values and derived chrimnatic coordinates. Students will undestand the concept of colour difference, its various forms and significance for technology.
5) Attendeeds will learn the good laboratory praxis of spectroscopis and colorimetric measurements. They will understand the significance of measuring conditions (geometry, reflection, polarization, base support etc.)
6) Attendees will learn about the basic technology principles of colour reproduction and characterization of light sources.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Billmeyer and Saltzman's Principles of Color Technology, 3rd Edition, Roy S. Berns, ISBN-10: 047119459X
Color Science: Concepts and Methods, Quantitative Data and Formulae, Günther Wyszecki, W. S. Stiles, ISBN-10: 0471399183

Recommended reading

Not applicable.

Elearning

Classification of course in study plans

  • Programme NPAP_ENVI Master's 1 year of study, winter semester, elective

Type of course unit

 

Lecture

26 hod., compulsory

Teacher / Lecturer

Syllabus

1. Human visual system I (eye structures and optical properties, physiology of sight)
2. Human visual system II (color vision theory, spatial resolution, color vision impairment, optical impairment, nerve signal processing)
3. Color perception (definition of color, visual adaptation, visual phenomena)
4. Light properties, photometry and radiometry (UV, VIS and NIR radiation, energy of light, units and measurement)
5. Colored objects - chemical reasons of colors (interactions of radiation and matter, terminology and technology of colorants, optical brighteners, UV absorbers, sensibilization)
6. Color systems and classification (historical approaches, present systems, industrial swatchbooks)
7. Moder colorimetry (principles and definitions, elemental components, colori vision and metamerism, color matching experiments, CIE colorimetry)
9. Light sources (black body radiation, Planckian and non-Planckian sources, technology of real light sources, ideal colorimetric light sources, white point)
10. Standard observing conditions and measurement
11. Theory and technology of color reproduction (spectral reproduction, additive systems, subtractive systems, dot area modelling, layer thickness modelling)
12. Summary, conclusion, possible substitute of cancelled lectures

Laboratory exercise

39 hod., compulsory

Teacher / Lecturer

Elearning