Course detail

Electrical Drives

FEKT-MPC-APOAcad. year: 2024/2025

Understanding principles of operation and basic physical and mathematical consequences applicable for a proper analysis of various motor types used in electric vehicles. Practical mutual comparison of these motors using the mentioned physical and mathematical relations. 

Typical conceptions of motors for electric vehicles and their control

  1. Soft ferromagnetic materials for electric motors - B/H characteristics, remanence, coercive force, hysteresis and eddy-current losses, problems of saturation - consequences at voltage or current supply of a coil. Hard magnetic materials for permanent magnets, properties, comparison.
  2. DC machine with separate excitation and with permanent magnets, motor construction, principle of operation, substitutional schematics, finding the torque-speed characteristics at various supply (control) ways, operation quadrants in the Cartesian system torque - speed, principle motor - dynamo (regenerative braking), efficiency map in dependence on actual speed and torque, commutator problems.
  3. Torque control of a DC machine, speed control of a DC machine with a cascade structure (with a slave current/torque control loop).
  4. Three-phase induction motor with squirrel cage - construction, rotating magnetic field, important analysis of the torque creation - following explaining the dependence of torque on the slip frequency, followed with the torque-speed characteristics at various supply (control) ways.
  5. Three-phase induction motor with squirrel cage - problems of motor losses related to the construction and way of control. Problems of de-exciting. Efficiency map. Substitution schematics.
  6. Simplest scalar control of an induction machine, U/f method, de-exciting, generator regime (regenerative braking).
  7. Possibilities of a scalar control of an induction machine with respect to a maximum efficiency in a wide range of speed and torque.
  8. Three-phase induction motor with squirrel cage - problems of loss minimization of the machine with the construction and with the optimum motor control with respect to the maximum action radius of the electric vehicle.
  9. Three-phase synchronous motor with permanent magnets - construction, rotating magnetic field, important analysis of torque creation using basic mathematical relations, problems of armature reaction and related important facts regarding magnetic voltage of permanent magnets and air-gap thickness, motor power.
  10. Three-phase synchronous motor with permanent magnets, with harmonic induced voltage and harmonic supply currents - distribution of the excitation flux density, pole covering, winding distribution, torque, induced voltage, cogging, position sensor.
  11. Three phase synchronous motor with permanent magnets and rectangular induced voltage and rectangular supply currents (BLDC) - distribution of the excitation flux density, pole covering, winding distribution, torque, induced voltage, cogging, position sensor, advantages and disadvantages compared to the harmonic variant. Efficiency map of a synchronous motor.
  12. Switched and synchronous reluctance machine (SRM) - construction, principles of operation, mathematical consequences, principle of high torque creation, problems of higher speed – explanation, advantages and disadvantages of reluctance machines.
  13. Comparison of properties, control possibilities and efficiency maps of above mentioned motors with a physical and mathematical explanation.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Rules for evaluation and completion of the course

The course is finished with an exam after previous credit. The exam is oral - max. 70 points. Numerical and laboratory exercises - max. 30 points.

 

Aims

Understanding principles of operation and basic physical and mathematical consequences applicable for a property analysis of various motor types used in electric vehicles. Practical mutual comparison of these motors using the mentioned physical and mathematical consequences. 


Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Skalický, J.: Teorie řízení 1, skripta VUT FEKT, 2002 (CS)
W.H.Yeadon, A.W. Yeadon.: Handbook of Small Electric Motors. McGraw Hill, 2004 (CS)
Zboray. L. a j.: Stavové riadenie el. pohonov, FEI Košice, 1995 (CS)

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme N-AAE-P Master's 1 year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

  1. Blokové schéma el. pohonu.
  2. Rozdělení regulačních pohonů, řízení, regulace.
  3. Mechanika pohonů, pohybové rovnice
  4. Typy motorů pro regulační pohony a jejich základní vlastnosti
  5. Stejnosměrný motor, náhradní schéma, matematický model, statický, dynamický
  6. Tranzistorový měnič jako dynamický člen z pohledu teorie regulace
  7. Kaskádní regulace v elektrických pohonech, princip, struktura, stabilita
  8. Metody návrhu regulačních smyček proudu a rychlosti, jejich srovnání, vliv poruch.
  9. Mechanické charakteristiky motorů a pracovních mechanismů
  10. Ztráty v pohonu, dimenzování, ekvivalentní metody
  11. Pohony sériovým buzením, odbuzování, SS motor v trakci
  12. Pohony s AS motory, frekvenční měniče, softstarty
  13. Pohony se synchronními motory, EC motor

Computer-assisted exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

Cvičení numerické a cvičení na počítačích:

  1. Kinematika elektropohonu, zatěžovací charakteristiky
  2. Metody redukce zatěžovacího momentu a momentu setrvačnosti
  3. Dynamika elektropohonu, pohybová rovnice
  4. Model stejnosměrného stroje
  5. Syntéza regulační smyčky proudu
  6. Syntéza regulační smyčky otáče

Laboratorní úlohy:

  1. Úvodní hodina, seznámení s laboratorními bezpečnostními předpisy, obsluha laboratorních přístrojů.
  2. Měření na asynchronním motoru
  3. Regulace otáček stejnosměrného motoru
  4. Měření na EC motoru
  5. Ventilátorová zatěžovací charakteristika
  6. Odevzdání protokolů, doměřování úloh