Course detail
Electrical Engineering 1
FEKT-BPA-EL1Acad. year: 2025/2026
The course deals with the basics of electrical engineering and in particular the theory of electrical circuits. At the beginning of the course universal and special methods of analysis of linear circuits in steady state are discussed. Next, students are introduced to the description and classification of time-varying quantities. The following part is an introduction to the analysis of nonlinear circuits using graphical and numerical methods. Another part of the course is dedicated to magnetic circuits, their description and basic methods of solutions, including circuits with permanent magnets. Important part of the course is laboratory exercises and computer exercises in which students will practice in the application of theoretical knowledge.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Offered to foreign students
Entry knowledge
- editing mathematical expressions;
- explain the procedure of mathematical function examination in order to find extremes;
- calculate the solution of simple linear equations ;
- apply the basics of matrix calculus;
- calculate the derivative, definite and indefinite integrals of simple linear functions of one variable and basic trigonometric functions.
Work in the laboratory is subject to a valid "instructed person" qualification, which students must obtain before starting the course. Information on this qualification is provided in the Dean's Guideline on Student Familiarity with Safety Regulations.
Rules for evaluation and completion of the course
The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.
Aims
After completing the course student will be able to:
- describe the characteristics of electrical circuit elements and their models,
- apply basic circuit laws in the analysis of electrical circuits,
- analyze linear and nonlinear nonconservative electric circuits,
- interpret the quantities in electrical circuits,
- calculate the characteristic values of the time-varying voltage and current waveforms.
Study aids
Prerequisites and corequisites
Basic literature
Mayergoyz, I. D., Lawson, W. (2012). Basic electric circuit theory. Gulf Professional Publishing. (EN)
Mulukutla S. S. (2001) Introduction to Electrical Engineering.Oxford University Press. (EN)
Recommended reading
Nagsarkar, T.K., M.S Sukhija (2011) Basic electrical engineering. Oxford University Press. (EN)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Safety instructions for service and work on electrical devices, protection against electrical current injury
Basic quantities and laws in electrical circuits
Basic circuit elements and their models
Power in electrical circuit, power matching
Superposition theorem, simplification method, method of proportional quantities, transfiguration
Direct application of Kirchhoff's laws
Loop current analysis
Nodal voltage analysis
Thévenin and Norton theorems, utilization of circuit duality and reciprocity
Magnetic circuits - basic quantities and laws
Analysis of magnetic circuits, graphic methods, loading line method
Magnetic circuits under alternating magnetization, transformers
Introduction to time-varying currents
Laboratory exercise
Teacher / Lecturer
Syllabus
Wires and clamps marking, types of distribute mains, the first help at electrical current injury.
Test from safety instructions according to the notice No. 50/1978.
REAL SOURCE PARAMETERS MEASUREMENT.
KIRCHHOFF'S LAWS IN ELECTRICAL CIRCUITS AND PROPORTIONAL QUANTITIES METHOD.
METHOD OF SUBSTITUTIONAL SOURCE.
NODE VOLTAGES METHOD.
LOOP CURRENTS METHOD.
PRINCIPLE OF SUPERPOSITION.
POWER TRANSMISSION AND POWER MATCHING.
MAGNETIC FIELD IN AIR GAPE.
Fundamentals seminar
Teacher / Lecturer
Syllabus
Wires and clamps marking, types of distribute mains, the first help at electrical current injury.
Test from safety instructions according to the notice No. 50/1978.
Basic circuit elements and their models.
Average and root-mean-square values of alternating current.
Power and power matching.
Superposition theorem, circuit duality and reciprocity.
Simplification method, method of proportional quantities.
Application of Kirchhoff's laws in electrical circuits.
Loop analysis method, nodal analysis method.
Thévenin and Norton theorems.
Basic quantities and units of magnetic circuits.
Methods of analysis of magnetic circuits.