Course detail

Numerical Computations with Partial Differential Equations

FEKT-DPC-TE2Acad. year: 2025/2026

The content of the seminar consists of two related units. The first part deals with the numerical solution of the partial differential equations (PDE), exploiting the Finite Difference method (FDM) and the Finite Element Method. The following PDE are solved by these methods: Laplace’s, Poisson’s, Helmholtz’s, parabolic, and hyperbolic one. The boundary and initial condition as well as the material parameters and source distribution is supposed to be known (forward problem). The connections between the field quantities and the connected circuits as well as the coupled problems are discussed to the end of this part.
The above mentioned FDM and FEM solutions are applied in the second part of the seminar to the evaluation of material parameters of the PDE’s implementing them as a part of the loop of different iterative processes. As the initial values are chosen either some measured data or starting data. The numerical methods utilizing PDE are used for the solution of the optimization problems (finding optimal dimensions or materiel characteristics) and inverse problems (different variants of a tomography known as the Electrical Impedance Tomography, the NMR tomography, the Ultrasound tomography), material models macro, micro and nanoscopic; photonics, nanoelectronics, biophotonics, plasma etc. Each topic is illustrated by practical examples in the ANSYS and MATLAB environment.

Language of instruction

Czech

Number of ECTS credits

Mode of study

Not applicable.

Entry knowledge

Mathematical calculus, Physics, Electromagnetism on the level of MSc.

Rules for evaluation and completion of the course

Total number of points 100.
The content and forms of instruction in the evaluated course are specified by the lecturer responsible for the course.

Aims

To understand the fundamentals of the PDR numerical solution for application in electrical engineering.
Get acquainted with new applications using MKP and MKD in optimization and inverse tasks.
To acquire theoretical knowledge as well as practical application of the FEM and FDM together with the ability to program corresponding forward and inverse problems.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

J.A.Stratton, Electromagnetic Theory, McGraw-Hill Book Company, New York and London, 1941, https://archive.org/details/electromagnetict031016mbp/page/n637 (EN)
Sadiku, M.: Electromagnetics (second edition), CRC Press, 2001 (EN)

Recommended reading

IEEE Transactions on Magnetics, ročník 2012 a výše (EN)
SIAM Journal on Control and Optimization, ročník 2013 a výše (EN)

Classification of course in study plans

  • Programme DPC-EKT Doctoral 0 year of study, summer semester, compulsory-optional
  • Programme DPC-IBE Doctoral 0 year of study, summer semester, compulsory-optional
  • Programme DPC-KAM Doctoral 0 year of study, summer semester, compulsory-optional
  • Programme DPC-MET Doctoral 0 year of study, summer semester, compulsory-optional
  • Programme DPC-SEE Doctoral 0 year of study, summer semester, compulsory-optional
  • Programme DPC-TEE Doctoral 0 year of study, summer semester, compulsory
  • Programme DPC-TLI Doctoral 0 year of study, summer semester, compulsory-optional

Type of course unit

 

Seminar

39 hod., optionally

Teacher / Lecturer

Syllabus

Úvod do funkcionální analýzy, diferenciální operátory, přehled parciálních diferenciálních rovnic. Okrajové a počáteční podmínky. Metody konečných diferencí (FDM).
Metody konečných prvků (MKP). – úvod. Diskretizace oblasti na konečné prvky. Aproximace pole z uzlových nebo okrajových hodnot.
Dopředný problém. Nastavení rovnic pro uzlové a hranové hodnoty Galerkinovou metodou.
Aplikace Galerkinovy ​​metody na statická a kvazistatická pole (Poissonova a Helmholtzova rovnice).
Aplikace MKP a FDM na úlohy časově proměnných (difuzní a vlnová rovnice).
Spojení oblasti pole s obvodem soustředěných parametrů. Sdružené problémy.
Problém optimalizace pole. Přehled deterministických metod. Lokální a globální minima.
Neomezené problémy – gradientová metoda, metoda nejstrmějšího klesání, Newtonovy metody.
Vázané optimalizační problémy spolu s MKP.
Inverzní úlohy pro eliptické rovnice. Metoda nejmenších čtverců. Deterministické regularizační metody.
Přehled o metodách úrovňových množin pro inverzní problémy a optimální návrh.
Průzkum inverzních problémů v tomografii.
Poznámka: Součástí každého bodu učiva budou praktické ukázky s využitím prostředí ANSYS a MATLAB.