Course detail

Solid State Physics

FEKT-MPA-FPFAcad. year: 2025/2026

Basic concepts of quantum and atomic physics. Structure of solids. Crystal lattice. Band theory of solids. Electric charge transport. Electrons and holes in non-equilibrium state. Selected semiconductor structures, sources and detectors of radiation.

Language of instruction

English

Number of ECTS credits

5

Mode of study

Not applicable.

Entry knowledge

The student who enrols in the course should be able to use the Cartesian coordinate system, should operate to solve simple cases of uniform motion and uniformly accelerated motion, Newton's laws and the laws of conservation of energy and momentum. He should be able to describe the basic structure of matter at the atomic level, further to explain the term of the electric charge, the electric current. He should be able to use the basic quantities describing the electric and magnetic fields and to assess the impact of these fields on the movement of electric charge. He should be able to describe the oscillating mechanical harmonic motion and to explain the mechanical progressive wave. He should be able to apply the basic laws of geometrical optics (the laws of reflection and refraction) for solving rays of light propagation. Students should be familiar with the mathematical apparatus at the level of basic work with vectors, differentiation and integration of scalar and vector functions of a scalar argument.
Generally, the knowledge on the technical university bachelor degree level is required.

Rules for evaluation and completion of the course

Students can obtain up to:
- 25 points from the semester project (solving of given problems or elaboration of a given topic)
- 20 points from laboratories (6 reports),
- 55 points from the exam (a written part of 35 points and a verbal part of 20 points).
Students must obtain at least 10 points in the written part to proceed to the verbal part.
Students must obtain at least 5 points in the verbal part to pass the exam.
The exam is focused on the verification of basic knowledge in the field of electrical and optical properties of solids, including solving of selected problems.
Laboratory exercises are compulsory, properly excused missed labs can be compensate after consultation with the teacher.

Aims

The objective is to provide students with knowledge of selected electrical and optical properties of solids, including examples of a wide range of interesting applications. Practical knowledge will be verified in the laboratory exercises.
The student is able to:
- explain the behavior of an electron in a potential well and a potential barrier,
- describe the basic nanostructures and their applications (quantum wells, wires, dots, a single light emitting diode, a single photon detector),
- describe the basic properties of atoms,
- describe the crystal structure of solids and explain the formation of energy bands,
- describe the drift and diffusion in solids,
- compute the mobility of charge carriers from the experimental data,
- compute the lifetime of minority carriers and the diffusion length of minority carriers from the experimental data,
- apply the continuity equation and Poisson's equation,
- describe the basic types of generation and recombination processes in semiconductors,
- describe the formation and properties of a PN junction,
- describe a LED and a solar cell.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Kittel, CH.: Introduction to Solid State Physics. 8th ed. Wiley, 2004, ISBN: 978-0471415268 (EN)
Seeger, K.: Semiconductor Physics. Springer Verlag, 1982, ISBN: 978-3540114215 (EN)

Recommended reading

Davies, J., H.: The Physics of Low-dimensional Semiconductors. Cambridge University Press, 1997, ISBN: 978-0521484916 (EN)
Kelly, M., J.: Low-dimensional Semiconductors. Clarendon Press, 1996, ISBN: 978-0198517801 (EN)

Classification of course in study plans

  • Programme MPAD-CAN Master's 0 year of study, summer semester, elective
  • Programme MPA-MEL Master's 1 year of study, summer semester, compulsory-optional
  • Programme MPA-SAP Master's 0 year of study, summer semester, elective
  • Programme MPAD-CAN Master's 0 year of study, summer semester, elective
  • Programme MPAD-MEL Master's 1 year of study, summer semester, compulsory-optional
  • Programme MPC-EVM Master's 0 year of study, summer semester, elective
  • Programme MPC-MEL Master's 0 year of study, summer semester, elective
  • Programme MPC-NCP Master's 0 year of study, summer semester, elective

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

1) Základní pojmy kvantové a atomové fyziky. Schrödingerova rovnice, částice a vlny, potenciálové jámy a bariéry, kvantování energie, atom vodíku, některé vlastnosti atomů.
2) Struktura pevných látek. Krystalické látky, krystalová mřížka, krystalografické soustavy, poruchy krystalové mřížky, kmity krystalové mřížky.
3) Pásová teorie pevných látek. Vznik energetických pásů, efektivní hmotnost, rozdělovací funkce, hustota stavů, koncentrace nosičů náboje, Fermiho hladina, kovy, polovodiče, izolanty.
4) Transportní jevy v polovodičích. Boltzmannova transportní rovnice, drift, elektrická vodivost, relaxační doba, rozptylové mechanismy, pohyblivost, Hallův jev, magnetorezistence, termoelektrický jev, Peltierův jev, termomagnetické jevy, difuze.
5) Polovodič v nerovnovážném stavu. Ambipolární pohyblivost, Poissonova rovnice, difúzní délka, generace a rekombinace nosičů, rekombinační centra, pasti, fotoelektrické vlastnosti.
6) Nehomogenní polovodičové systémy. Homogenní a heterogenní přechod, kapacita, VA charakteristika, průrazy, kontakt kov-polovodič.
7) Elektromagnetické vlny v pevných látkách. Vznik a vlastnosti elektromagnetické vlny, interakce s látkou, vlny v krystalech, optické vlastnosti ve vnějším elektrickém a magnetickém poli.
8) Polovodičové zdroje a detektory záření. Zářivá a nezářivá rekombinace, mechanismy vybuzení záření, LED dioda, fotodioda, solární článek, CCD snímač.
9) Lasery. Generace koherentního záření, stimulovaná emise, druhy laserů, plynové, pevnolátkové, polovodičové lasery.
10) Nanostruktury. Kvantové jámy, dráty, tečky, jednofotonová světloemitující dioda, jednofotonový detektor, kvantový počítač.
11) Nelineární optické jevy. Optická vlákna, nelineární prostředí, nelineární jevy druhého a třetího řádu, rozptyl světla.
12) Fotonické krystaly. Princip, vlastnosti, jednorozměrný a dvojrozměrný krystal, poruchy, aplikace.
13) Supravodivost. Vznik supravodivosti, druhy supravodivosti, vysokoteplotní supravodivost, aplikace, Josephsonův jev, kvantový Hallův jev. 

Laboratory exercise

13 hod., compulsory

Teacher / Lecturer

Syllabus

1. Demonstration of microworld phenomena.
2. Ellipsometry.
3. Spectral reflectometry.
4. Interferometry.
5. Scanning probe microscopy.
6. Electron microscopy.
7. Harmonic oscillator.
8. Tunnel diode.