Course detail

Electromagnetic Field Modeling

FEKT-MPA-MEMAcad. year: 2025/2026

Principles of the finite element method and its application to different variants of electromagnetic fields. In the computer-based exercises, the possibilities and perspectives of the method are shown and practiced together with various application examples facilitating the computation of various types of electromagnetic fields (the static to optical frequency forms). In addition to the above mentioned elements, the students carry out the following tasks:
- practice in the ANSYS environment
- solution of more complex tasks by means of working input data
- direct solution of Maxwell’s equations via the method of finite differences in the time domain (FDTD)

Language of instruction

English

Number of ECTS credits

5

Mode of study

Not applicable.

Offered to foreign students

The home faculty only

Entry knowledge

Students wishing to enroll in the course should be able to explain the basic notions and physical principles of electromagnetism, and they ought to have a basic understanding of the mathematical notation of partial differential equations. In the course-based discussions, the participants are expected to assess the consequences of electromagnetic principles and/or effects.

Rules for evaluation and completion of the course

The students are required to produce 10 computer-based tasks during the semester. A task can be marked with max. 5 pts; thus, 50 pts in total can be won by a student in this portion of course work. Another grading component consists in the semester exam, for which the students can gain 50 pts.
The credits are awarded to students who actively participate in all tutorials (computer-based exercises), submit all assigned tasks, and win at least the minimum of 30 pts for the tasks submitted.
In order to successfully complete the course, a student is required to gain the credits before taking the semester exam, and the exam results must not be below 20 points.
The controlled instruction and methods of its realization are stipulated within the yearly directive issued by the guarantor of the subject.

Aims

Introduce the students to elementary numerical methods for the computation of electromagnetic fields. Use various field calculation programs as an instrument enabling the students to design their own simple programs based on the ANSYS system.

An overview will be provided of the principles characterizing the methods for numerical modelling of electromagnetic fields. On this basis, the students will be able to:
- explain the numerical modelling methods
- perform a numerical analysis of simpler problems related to the electrostatic field, the steady-state electric field in conductive materials, the magnetostatic and stationary magnetic fields, the vf electromagnetic field.
- set up a numerical model for combined coupled problems (electromechanical, electrothermal).

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Chari, M., V., K., Salon, S., J.: Numerical Methods in Electromagnetism, San Diego, Academic Press, 2000. ISBN: 978-0126157604 (EN)
Jin, J., M. : Theory and Computation of Electromagnetic Fields, Wiley, 2020, ISBN: 978-1119108047. (EN)
Jin, J.: The finite element method in electromagnetics, 3rd edition, Wiley, 2014, ISBN: 978-1118571361 (EN)
Manual ANSYS Maxwell (ANSYS MaxwellTechnical Notes), ANSYS Inc., 2020. (EN)
Zhu, Y., Cangellaris, A., C.: Multigrid Finite Element Methods for Electromagnetic Field Modeling,Wiley, 2006, ISBN: 978-0471741107 (EN)

Recommended reading

J.S. Hesthaven, G. Rozza, B. Stamm. (2016).Certified Reduced Basis Methods for Parametrized Partial Differential Equations. ISBN 978-3-319-22470-1 ISBN 978-3-319-22470-1 (EN)
Quarteroni, A., Manzoni, A., & Negri, F. (2015). Reduced basis methods for partial differential equations: An introduction. Reduced basis methods for partial differential equations: An introduction (pp. 1-263) doi:10.1007/978-3-319-15431-2 (EN)

Classification of course in study plans

  • Programme MPA-BIO Master's 2 year of study, summer semester, compulsory-optional
  • Programme MPA-EAK Master's 1 year of study, summer semester, compulsory-optional
  • Programme MPA-EEN Master's 1 year of study, summer semester, compulsory-optional
  • Programme MPA-MEL Master's 1 year of study, summer semester, compulsory-optional
  • Programme MPAD-BIO Master's 1 year of study, summer semester, compulsory-optional
  • Programme MPAD-MEL Master's 1 year of study, summer semester, compulsory-optional

Type of course unit

 

Lecture

26 hod., compulsory

Teacher / Lecturer

Syllabus

Basic information about the ability and examples of application of the finite element method (FEM).
Elements, shape and approximation functions, examples of approximation.
Principle of the finite element mesh generators and their handling.
Discretization of 1D and 2D linear Poisson equation.
Discretization of 2D non-linear Poisson equation.
Basic equations of the electromagnetic field and different potentials.
Reduced, differential and general scalar potential method for the magnetic field.
Time dependent field solution by FEM.
Principles and reason for the introduction of the edge elements.
Solution of Maxwell equations in the frequency domain. Examples: waveguides, antennas.
Direct solution of the Maxwell equations by the FDTD method

Exercise in computer lab

26 hod., compulsory

Teacher / Lecturer

Syllabus

Program ANSYS - introduction.
Electric field modelling by the ANSYS program
2D magnetic circuit modelling by the ANSYS program
3D transformer magnetic field model by ANSYS.
Waveguide field models by ANSYS.
Model of shielding by ANSYS.
Application of the FEM system in the MATLAB environment.
Field calculation by the FEM system in the MATLAB.
Electric field in the switching station by the charge simulation method.
Wave diffraction on a cylinder by a FDTD program.