Course detail

Data Communication

FEKT-MPC-DAKAcad. year: 2025/2026

Students will be introduced in detail to data transmission systems and the possibilities of realizing data communication. The course covers issues of information theory, information source and discrete communication system description. Furthermore, it focuses on data transmission, in particular on the basic concepts, data and signal description, transmission methods, transmission reliability, coding of analog and discrete signals. In greater detail it also focuses on coding: redundancy reducing code - prefix codes, the Huffman code, data compression principles. Forward error coding: Block codes, tree codes, turbo codes, concatenated codes, error security system. Last but not least, it also focuses on modulations, cryptography basics and other fields of data transmission.

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Entry knowledge

Students who are going to attends this course should have a full knowledge of selected topics in mathematics, in particular: solving the equations and non-equations with logarithms, matrix calculation, especially vector multiplication with a matrix, know arithmetic operations with polynomials, in particular dividing, conversion into the binary numerical system and calculations in binary numerical system. Students should have experience of creating simple functions in MATLAB.

Rules for evaluation and completion of the course

At the end of each laboratory or computer exercise the teacher checks the results of the given assignment and awards points. The points awarded for computer exercises include the results of tests (a maximum of 7 points in a semester) and the credit test (a maximum of 8 points). The minimum feasible value of the credit test is 0.7 points. The points awarded for laboratory (a maximum of 15 points in a semester) and computer exercises (a maximum of 15 points in a semester) go to the evaluation of the examination and thus also the assessment. The exam is written. The maximum number of points is 70. The overall evaluation is the sum of points for computer exercises, laboratories and a written exam. The minimum feasible value is 50 points; the maximum value is 100 points.

 
Attendance at laboratory and computer exercises is compulsory, justified absence can be made up for after prior arrangement with the instructor. The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Aims

The aim of the course is to introduce students to the basic knowledge of data communication, tools for its realization and the conditions of its realization in contemporary as well as prospective telecommunication systems.
Students who complete this course are able to:
- explain the concepts of information, information content and redundancy
- evaluate the static properties of the information source, in particular redundancy, and propose an appropriate code to reduce redundancy
- explain the concept of channel capacity, the Shannon-Hartley theorem, and determine it for discrete and analog channels
- describe the principle of FEC and ARQ systems
- explain the principle of error protection using codes
- explain the concepts of the Hamming distance and weight
- determine the detection and correction capabilities of code
- explain the principle of security using block, cyclic, tree and concatenated codes
- secure data by the previously mentioned codes based on the specified generation matrix or polynomial
- find the encoder and the decoder diagram of the block, cyclic or tree code
- draw a tree diagram, trellis diagram and state diagram of the tree code
- describe the principle of the Viterbi decoding algorithm
- list the transmission methods in the base-band and pass-band
- list and describe some line codes and their utilization
- list and describe the basic keying methods and combined keying methods
- list and describe the principle of single carrier and multicarrier transmission with application examples
- list the basic concepts of data encryption and cryptographic systems
- list the services provided by cryptographic systems
- describe and compare symmetric and asymmetric cryptographic systems

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

ŠILHAVÝ, P. Datová komunikace - Laboratorní cvičení. Brno: Vysoké učení technické v Brně, 2013. s. 1-84. ISBN: 978-80-214-4725-7. (CS)
ŠILHAVÝ, P. Datová komunikace. Brno: Vysoké učení technické v Brně, 2012. s. 1-211. ISBN: 978-80-214-4455-3. (CS)

Recommended reading

BIGGS, Norman L. Codes : an introduction to information communication and cryptography. London : Springer, 2008. 273 s. ISBN 978-184-8002-722. (EN)
MORELOS-ZARAGOZA, Robert H. The art of error correcting coding. Chichester : John Wiley & Sons, 2002. 221 s. ISBN 04-714-9581-6. (EN)
SKALAR, B.. Digital Communications, Fundamentals and applications, Prentice-Hall, 2003, ISBN 0-13-084788-7. (EN)
ŠILHAVÝ, P. Přenos dat a kódování pro integrovanou výuku VUT a VŠB-TUO. Brno: Vysoké učení technické v Brně, 2013. s. 1-107. ISBN: 978-80-214-4827-8. (CS)

Classification of course in study plans

  • Programme MPC-EAK Master's 1 year of study, summer semester, compulsory-optional

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

1. Základní poznatky z teorie informace.
2. Systémy přenosu informace.
3. Přenos dat.
4. Kódování snižující nadbytečnost.
5. Protichybové kódování.
6. Blokové kódy.
7. Blokové cyklické kódy.
8. Příklady cyklických kódů.
9. Stromové kódy.
10. Turbo kódy.
11. Protichybové kódové systémy.
12. Modemy v systémech datové komunikace.
13. Základy šifrování.

Exercise in computer lab

12 hod., compulsory

Teacher / Lecturer

Syllabus

1. Úvodní cvičení, MATLAB.
2. Teorie informace, Huffmanův kód.
3. Lineární blokové kódy.
4. Cyklické kódy.
5. Konvoluční kódy.
6. Zápočtový test.

Laboratory exercise

14 hod., compulsory

Teacher / Lecturer

Syllabus

1. Modemy VDSL2.
2. Modemy G.fast.
3. Technologie LoRa a LoRaWAN.
4. Pasivní optické sítě PON.
5. xDSL modemy - odolnost vůči rušeníí.
6. Modemy DOCSIS.
7. PLC modemy.
8. Sériová rozhraní RS232, USB a I2C.