Course detail
Methods of EMC Analysis
FEKT-MPC-EMCAcad. year: 2025/2026
Students will be introduced to (a) the mathematical representation of causal, EMC related signals with an emphasis on applications of the Laplace transform; (b) the modeling of electromagnetic (EM) interference of Kirchhoff circuits and transmission lines; (c) the EM emission analysis; (d) the disturbing EM susceptibility analysis.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Entry knowledge
Linear algebra; differential and integral calculus of complex variable; integral transforms; basic principles from the theory of electromagnetic (EM) fields, antennas and transmissions lines.
Rules for evaluation and completion of the course
-- Activity during exercises: 10 points
-- Test: 20 points
-- Oral exam: 70 points.
To pass the course successfully, it is necessary to achieve at least 10 points from the test.
Aims
After successfully passing the course, a student understands basic concepts of EMC with an emphasis on their underlying physics and mathematical description. Furthermore, the student is able to (a) apply the Laplace transform to the analysis of causal signals; (b) derive the shielding efficiency of planar shields; (c) derive the characteristic impedance of simple transmission lines; (d) derive integral equations for EM scattering analysis; (e) describe EM radiation from fundamental antennas; (f) apply the Lorentz reciprocity theorem to systems EM susceptibility analysis.
Study aids
Prerequisites and corequisites
Basic literature
TESCHE, F. M., M. IANOZ a T. KARLSSON. EMC Analysis Methods and Computational Models. New York: John Wiley & Sons, 1997. ISBN 978-0-471-15573-7. (EN)
Recommended reading
Classification of course in study plans
- Programme MPC-EKT Master's 2 year of study, winter semester, compulsory-optional
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
-A brief tour to vector calculus and integral theorems
-Fundamentals of EM field theory
-Signal analysis with an emphasis to the Laplace transform and its applications
-Properties of EMC standard pulses; spectral (Bode) diagrams and spectral bounds
-Shielding effectiveness of conductive sheets
-Time-domain transmission-line theory; calculation of the characteristic impedance
-Integral representations of EM fields
-Integral-equation EM scattering analysis
-EM emissions from radiating sources
-Lorentz reciprocity theorems; interaction with Kirchhoff's systems
-EM susceptibility of Kirchoff's systems
-Transmission-line susceptibility analysis
Fundamentals seminar
Teacher / Lecturer
Syllabus
-A brief tour to vector calculus and integral theorems
-Fundamentals of EM field theory
-Signal analysis with an emphasis to the Laplace transform and its applications
-Properties of EMC standard pulses; spectral (Bode) diagrams and spectral bounds
-Shielding effectiveness of conductive sheets
-Time-domain transmission-line theory; calculation of the characteristic impedance
-Integral representations of EM fields
-Integral-equation EM scattering analysis
-EM emissions from radiating sources
-Lorentz reciprocity theorems; interaction with Kirchhoff's systems
-EM susceptibility of Kirchoff's systems
-Transmission-line susceptibility analysis