Course detail
Data Structures and Algorithms
FEKT-MPC-PDAAcad. year: 2025/2026
Complexity theory, graph theory, graph equivalence, queuing theory, Petri nets, simulation and modeling, Markov models, advanced evolutionary algorithms.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Entry knowledge
Rules for evaluation and completion of the course
The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.
Aims
Alumni know complexity theory, representative examples and are able to apply graph theory, queue theory, theory of Petri nets and Markov models to solve the selected examples.
Study aids
Prerequisites and corequisites
Basic literature
Virius, Miroslav. Základy algoritmizace. Česká technika-nakladatelství ČVUT, 2008. (CS)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
L02: Selected complexity problems
L03: Strongly Connected Components
L04: Graph Theory
L05: Pairing and isomorphism
L06: Flow and Cuts in Graphs
L07: Neural Networks
L08: Convolutional Neural Networks
L09: Fundamentals of Machine Learning
L10: Recurrent Neural Networks
L11: Reinforcement learning
L12: Neural Networks for trees and graphs
L13: Summary and preparation for final exam
Exercise in computer lab
Teacher / Lecturer
Syllabus
1) Hra tanky - opakování programování
2) Genetické algoritmy
3) Optimlizace - genetické programování
4) Komponenty grafu
5) Maďarský algoritmus, párování
6) Grafy - vyvažování zátěže
7) Neuronové sítě
8) Půlsemestrální zkouška
9) Trénování konvoluční neuronové sítě a přenesené učení
10) Rekurentní neuronové sítě
11) Q-učení - problém zamrzlého jezera
12) Zápočtový týden - obhajoba samostatné práce
13) Zápočtový týden - obhajoba samostatné práce
Project
Teacher / Lecturer
Syllabus