Course detail

Limit States of Metallic Structures

FSI-RMKAcad. year: 2025/2026

Limit states - their general classification, limit states in strength analysis. Fatigue of structures, basic characteristics, durability assessment of service life under low-cycle and high-cycle fatigue. The most important concepts of linear-elastic and elasto-plastic fracture mechanics. Evaluation of the resistance of structures to brittle failure at the stage of their design. Assessment of the crack as a defect under monotonic and cyclic stresses.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Entry knowledge

Static structural analysis of beam bodies.
Empirical calculation of machine parts.
Static structural analysis of parts using finite element method.
Material characteristics of metallic materials (without a crack and with crack) in terms of monotonic and cyclic loading and also in terms of reduced, normal, and elevated temperature.

Rules for evaluation and completion of the course

Active participation in seminars and elaboration of assigned semester projects is required for granting the credit. The exam consists of a written part in the form of test questions and, if necessary, an oral part.
Attendance at seminars is mandatory. A one-time absence can be replaced by exercising with another group in the same week or by working on a substitute assignment. Prolonged absence is replaced by a special assignment according to the instructions of the instructor or lecturer.

Aims

The objective of the course is to make students familiar with the concepts and characteristics of limit states. From the extensive set of limit states, increased attention will be paid only to the most common limit states, ie limit states of fatigue and brittle failure with respect to current methods, standards, and regulations.
Gaining an overview of the limit states during the design and assessment of metal structures. In further technical practice, graduates will be able to specify the individual steps of assessment according to the necessary regulations, standards or guidelines.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Anderson, T. L.: Fracture mechanics: fundamentals and applications. Fourth edition. Boca Raton, [2017]. ISBN 978-1-4987-2813-3. (EN)
Dowling, N. E.: Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue, 4th ed. Boston: Pearson, c2013. ISBN 01-313-9506-8. (EN)
Lee, Y.L., Barkey M.E., Kang H.T.: Metal fatigue analysis handbook: Practical problem-solving techniques for computer-aided engineering. USA: Elsevier, 2012. ISBN 978-0-012-385204-5. (EN)
Vlk, M.: Dynamická pevnost a životnost, skriptum, VUT Brno 1992 (CS)
Vlk, M., Florian, Z.: Mezní stavy a spolehlivost, skriptum, Brno 2007 (CS)

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme N-IMB-P Master's

    specialization IME , 2 year of study, winter semester, compulsory
    specialization BIO , 2 year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hod., optionally

Teacher / Lecturer

Syllabus

 Introduction to the course. The definition and classification of the limit states.
 A set of selected limit states of technical objects.
 Concept (philosophy) of design and assessment, plan to ensure the integrity of the structure.
 Failure during cyclic loading without a crack.
 Subcritical crack growth.
 Brittle fracture.

Computer-assisted exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

 Fatigue assessment of welded joints without a crack.
 Fatigue assessment of welded joints with a crack.
 Fatigue assessment of notched part in the high cyclic region.
 Fatigue assessment of notched part in the low cyclic region.
 Use of linear elastic fracture mechanics parameters to calculate service life.
 Determination of the value of the J-integral using FEM and its use.
 Use of a fracture diagram when assessing a body with a crack.
 Credit.