Course detail

Computer Physics I

FSI-T1FAcad. year: 2025/2026

Individual solution of the physical tasks with utilisation of the
computer. As a mathematical tool the basic numerical methods (derivation,
integration, solution of the system of the equations, interpolation,
regression, solution of the 1st order differential equations) are used.
As a programming environment the students use the Excel, the MATLAB and
the MathCad.

Language of instruction

Czech

Number of ECTS credits

3

Mode of study

Not applicable.

Entry knowledge

Hardware. General structure of operating system, principles of user communication. Using the Windows. Word processors and spread sheets - MS Word and MS Excel. Computer networks, Internet, email. MATLAB - basic information. Knowledge of the classic physics on the high school level.

Rules for evaluation and completion of the course

To receive the accreditation, the student has to solve all entered tasks. The procedure of the solution is documented by written remarks. The result of the solution is hand on as electronic document.
Teacher checks the presences on the seminars that are stated in the timetable. The form and the date of the compensation of the missing lessons are specified by teacher.

Aims

The aim of the course is to get acquainted with potential of the PC for everyday work of the engineer. Passing the course the student should be able to utilize the PC for solution of the calculation tasks to technical objects and the evaluation and presentation of the laboratory measurements. The individual work of the students is required.
The student acquires the concept and experience of the utilisation of the different programming tools (Excel, MALAB, MathCad) for solution of the engineering computational tasks.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

DeVries,P.L.: A First Course in Computational Physics. John Wiley & Sons, Inc., 1994.
Gould, H. - Tobochnik, J.: An Introduction to Computer Simulation Methods. Part 1 and 2. Addison - Wesley Publishing Company, 1989.
Potter, F. - Peck, Ch.V.: Dynamic Models in Physics. Vol.1. Mechanics. N.Simonson Company, 1989.

Recommended reading

Barilla, J.: Microsoft Excel pro techniky a inženýry, 1998. (CS)
Dudek, P.: MathCad - příručka pro uživatele. Grada, 1992. (CS)
Maxfield, B.: Essential Mathcad for engineering, science and math. Academic Press, Amsterdam: Elsevier, 2009 (EN)
www semináře pro Matlab a Simulink. http://www.mathworks.com/academia (EN)
Zaplatílek,K. - Doňar,B.: MATLAB pro začátečníky. BEN - Technická literatura, 2003. (CS)

Classification of course in study plans

  • Programme B-FIN-P Bachelor's 1 year of study, summer semester, elective
  • Programme BIT Bachelor's 1 year of study, summer semester, elective
  • Programme BIT Bachelor's 1 year of study, summer semester, elective

Type of course unit

 

Lecture

13 hod., optionally

Teacher / Lecturer

Syllabus

The lecture tends to the introduction of the tasks solved in seminars in computer labs. The emphasis is placed on:
- the physical base of solved exercises,
- the common context of the numerical methods and algorithms used for the solution,
- the programming methods, particularity and restrictions of the programming environment, used for the solution.

Computer-assisted exercise

13 hod., compulsory

Teacher / Lecturer

Syllabus

Introduction to computer physics. Basics of the work in computer labs.
Features of the electronic spreadsheet Excel. Kinematics of the uniform acceleration motion. Building spreadsheet models.
Rates of change. Accuracy of the numerical differentiation.
Kinematics of nonuniform acceleration. Simple numerical integration.
Flow of the heat. Simpson's method of integration.
The Second law of the motion. Solving the differential equation by Euler's method and Runge-Kutta method.
Harmonic and nonharmonic oscillations.
Building of the physical models in programming environment Matlab and Simulink.
Motion in real environment with resistive forces. The damped and driven oscillatory motion.
Evaluation of the experimental results and writing measurement report in MathCAD.
Expressing and calculation of the statistics errors and confidence intervals.