Course detail
Linear Algebra
FIT-ILGAcad. year: 2025/2026
Matrices and determinants. Systems of linear equations. Vector spaces and subspaces. Linear representation, coordinate transformation. Own values and own vectors. Quadratic forms and conics.
Language of instruction
Czech
Number of ECTS credits
5
Mode of study
Not applicable.
Guarantor
Department
Entry knowledge
Secondary school mathematics.
Rules for evaluation and completion of the course
- Evaluation of the five written tests (max 20 points).
- Participation in lectures in this course is not controlled.
- The knowledge of students is tested at exercises at five written tests for 4 points each and at the final exam for 80 points.
- If a student can substantiate serious reasons for an absence from an exercise, (s)he can either attend the exercise with a different group (please inform the teacher about that) or ask his/her teacher for an alternative assignment to compensate for the lost points from the exercise.
- The passing boundary for ECTS assessment: 50 points.
Aims
The students will get familiar with elementary knowledge of linear algebra, which is needed for
informatics applications. Emphasis is placed on mastering the practical use of this knowledge to solve
specific problems.
The students will acquire an elementary knowledge of linear algebra and the ability to apply some of its basic methods in computer science.
The students will acquire an elementary knowledge of linear algebra and the ability to apply some of its basic methods in computer science.
Study aids
Not applicable.
Prerequisites and corequisites
Not applicable.
Basic literature
Not applicable.
Recommended reading
Havel, V., Holenda, J., Lineární algebra, STNL, Praha 1984.
Kolman B., Elementary Linear Algebra, Macmillan Publ. Comp., New York 1986.
Kolman B., Elementary Linear Algebra, Macmillan Publ. Comp., New York 1986.
Classification of course in study plans
Type of course unit
Lecture
26 hod., compulsory
Teacher / Lecturer
Syllabus
- Systems of linear homogeneous and non-homogeneous equations. Gaussian elimination.
- Matrices and matrix operations. Rank of the matrix. Frobenius theorem.
- The determinant of a square matrix. Inverse and adjoint matrices. The methods of computing the determinant.The Cramer's Rule.
- The vector space and its subspaces. The basis and the dimension. The coordinates of a vector relative to a given basis. The sum and intersection of vector spaces.
- The inner product. Orthonormal systems of vectors. Orthogonal projection and approximation. Gram-Schmidt orthogonalisation process.
- The transformation of the coordinates.
- Linear mappings of vector spaces. Matrices of linear transformations.
- Rotation, translation, symmetry and their matrices, homogeneous coordinates.
- The eigenvalues and eigenvectors. The orthogonal projections onto eigenspaces.
- Numerical solution of systems of linear equations, iterative methods.
- Conic sections.
- Quadratic forms and their classification using sections.
- Quadratic forms and their classification using eigenvectors.
Computer-assisted exercise
26 hod., compulsory
Teacher / Lecturer
Syllabus
Examples of tutorials are chosen to suitably complement the lectures.