Course detail

Advanced Operating Systems

FIT-POSAcad. year: 2025/2026

Basic concepts, operating system kernel, kernel structure. Parallel programming and synchronization with a view to kernel synchronization. Deadlock, deadlock detection and prevention. Scheduling algorithms for uni-processor systems. Memory management, virtual memory, paging, virtual memory implementation. Input/Output, synchronous and asynchronous I/O, drivers, optimization of disk operations, File systems, disk space allocation, metadata structures, failure recovery, file system examples. Security and protection.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Entry knowledge

C language programming in Unix environment, computer architecture, Intel x86 assembler, basic principles of operating systems.

Rules for evaluation and completion of the course

During the semester online tests and project. The project must be submitted by the published date, late submission of the project is evaluated 0 points.


Students' knowledge is verified by project elaboration, online tests and a final exam.

Aims

The goal is to acquaint students with the principles and concepts that are used as a basis of modern operating system kernels.

Students are acquainted with the parallel programming using POSIX threads, usage of synchronization primitives, virtual memory and file system.

A deeper understanding of computer systems and system programming.

Study aids

Not applicable.

Prerequisites and corequisites

Basic literature

Not applicable.

Recommended reading

Andrews, G.R.: Foundations of Multithreaded, Parallel, and Distributed Programming, Addison-Wesley, 2000, ISBN 0-201-35752-6
McKusick, M.K., Neville-Neil, G.V.: The Design and Implementation of the FreeBSD Operating System, Addison-Wesley, 2004, ISBN 0-201-70245-2
Nutt, G.J.: Operating Systems: A Modern Perspective, Addison-Wesley, 2000, ISBN 0-201-61251-8
Schimmel, K.: UNIX Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Programmers, Addison-Wesley, 1994, ISBN 0-201-63338-8
Stevens, W.,R.: Advanced Programming in the UNIX Environment: Third Edition, Addison-Wesley Professional, 2013, ISBN 0-321-63773-9

Vahalia, U.: Unix Internals: The New Frontiers, Prentice-Hall, 1996, ISBN 0-13-101908-2

Classification of course in study plans

  • Programme MITAI Master's

    specialization NSEC , 0 year of study, summer semester, elective
    specialization NISY up to 2020/21 , 0 year of study, summer semester, elective
    specialization NNET , 0 year of study, summer semester, elective
    specialization NMAL , 0 year of study, summer semester, elective
    specialization NCPS , 0 year of study, summer semester, elective
    specialization NHPC , 0 year of study, summer semester, elective
    specialization NVER , 0 year of study, summer semester, elective
    specialization NIDE , 0 year of study, summer semester, elective
    specialization NISY , 0 year of study, summer semester, elective
    specialization NEMB , 0 year of study, summer semester, elective
    specialization NSPE , 0 year of study, summer semester, elective
    specialization NEMB , 0 year of study, summer semester, elective
    specialization NBIO , 0 year of study, summer semester, elective
    specialization NSEN , 0 year of study, summer semester, elective
    specialization NVIZ , 0 year of study, summer semester, elective
    specialization NGRI , 0 year of study, summer semester, elective
    specialization NADE , 0 year of study, summer semester, elective
    specialization NISD , 0 year of study, summer semester, elective
    specialization NMAT , 0 year of study, summer semester, elective

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

  1. Kernel structure, interface, system calls, context switch, interrupts, system interface, Unix systems interface, standardization, SVID, XPG.
  2. Processes and POSIX threads, creating processes and threads, threads implementation.
  3. Parallel programming, synchronization, synchronization basics, mutual exclusion using memory read&write.
  4. Synchronization using special instructions on uni-processor and multiprocessor systems with shared memory, priority inversion and solution.
  5. Synchronization tools and programming languages frameworks, classical synchronization tasks and their solutions.
  6. Processor scheduling, strategy, implementation, scheduling algorithms for uni-processor systems.
  7. Resource allocation, deadlock, deadlock avoidance, solutions for CR and SR systems.
  8. Memory architecture, paging, page tables and TLB.
  9. Virtual memory, paging algorithm, page replacement algorithms.
  10. Practical aspects of virtual memory - code sharing, memory sharing, locking, dynamic libraries, file mapping, kernel memory.
  11. Input and output, drivers, synchronous and asynchronous operations, disk I/O optimization.
  12. Files systems, organization, space allocation, free space allocation, failure recovery, Unix file systems, BSD FFS and log based file systems.
  13. Security and protection, system access, data protection, security risks.

Project

13 hod., compulsory

Teacher / Lecturer

Syllabus

Independently assigned project in the range of 13 hours, evaluated 10 points on the topics discussed in lectures.