Course detail

Practicum in Mathematics in Russian 2

FP-pmrlPAcad. year: 2025/2026

Содержание данного практикума соответствует предмету Математика 2 и даёт студентам возможность подробнее ознакомиться с практическим решение конкретных задач, поупражняться в решении задач по более сложным темам и преодолеть трудности при усвоении учебной программы.

Language of instruction

Russian

Number of ECTS credits

Mode of study

Not applicable.

Offered to foreign students

Of all faculties

Entry knowledge

High School Mathematics and Mathematics I

Rules for evaluation and completion of the course

Požadavky pro udělení zápočtu:
-aktivní účast ve cvičení,
-plnění individuálních úkolů a zadávaných písemných prací,
-absolvování kontrolního testu v průběhu semestru s hodnocením alespoň "dostatečně" (E).


Účast na praktiku je kontrolována.

Aims

Целью предмета является повторение, закрепление и систематизирование знаний, полученных на лекциях и практических занятиях по предмету Математика I и развитие у студентов навыков самостоятельного решения задач по всем изучаемым темам. Студенты будут понимать и смогут самостоятельно работать с избранными приложениями математики в экономике и информатике. Студенты будут ознакомлены с чешской и английской специальной терминологией
Приобретённые знания и практические математические навыки, главным образом, будут основой для получения знаний и расширения навыков в областях с экономической направленностью, для корректного использования математического программного обеспечения, а также будут важной отправной точкой для освоения новых сведений в смежных дисциплинах математического характера.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

MAROŠOVÁ, M. - MEZNÍK, I.: Cvičení z matematiky I., 2. vydání, Brno 2008, FP VUT v Brně, 144s, ISBN 978-80-214-3724-1
MEZNÍK, I. Diskrétní matematika pro užitou informatiku, Brno 2013, CERM s.r.o., 185 s, ISBN: 978-80-214-4761- 5
MEZNÍK, I.: Matematika I, , 9. vydání, Brno 2011, FP VUT v Brně, 150s, ISBN 978-80-214-3725-8
MEZNÍK, I.: Matematika II., 11.vydání, Brno 2009, CERM s.r.o., 105s, ISBN 978-80-214-3816-3

Recommended reading

FECENKO, J.: Matematika. 2.vydání, Ekonóm, Bratislava 1995, 377s, ISBN 80-225-0675-3
JACQUES, I.: Mathematics for economics and business. Second edition. Addison-Wesley, Wokingham 1994. 485s. ISBN 0-201-42769-9
MEZNÍK, I.- KARÁSEK, J.- MIKLÍČEK, J.: Matematika I pro strojní fakulty, 1. vydání, SNTL, Praha 1992, 502s, ISBN 80–03–00313-X

Classification of course in study plans

  • Programme BAK-EP Bachelor's 1 year of study, summer semester, elective
  • Programme BAK-MIn Bachelor's 1 year of study, summer semester, elective
  • Programme BAK-PM Bachelor's 1 year of study, summer semester, elective

  • Programme BAK-Z Bachelor's

    branch BAK-Z , 1 year of study, summer semester, elective

Type of course unit

 

Exercise

26 hod., compulsory

Teacher / Lecturer

Syllabus

1. Řady čísel (nutná podmínka konvergence, základní kritéria konvergence a divergence řad, odhad zbytku)
2. Mocninná řada (konstrukce Taylorova polynomu a odhad zbytku, Taylorův vzorec pro přibližný výpočet funkčních hodnot a integrálu)
3. Neurčitý integrál (použití vlastností a základních pravidel pro výpočet integrálů)
4. Metody integrace (použití metod per partes a substituční, integrace jednoduchých racionálních funkcí)
5. Určitý integrál (užití vlastností a základních pravidel pro výpočet, další aplikace, konvergence a příp. výpočet nevlastního integrálu)
6. Obyčejné diferenciální rovnice (obecné a partikulární řešení rovnice se separovanými proměnnými)
7. Lineární diferenciální rovnice 1. řádu (řešení homogenní a nehomogenní rovnice, metoda variace konstanty)
8. Funkce dvou proměnných I (definiční obory, grafy jednodušších funkcí 2 proměnných a jeho řezy, poruchy spojitosti, výpočty parciálních derivací 1. řádu)
9. Funkce dvou proměnných II (výpočty parciálních derivací vyšších řádů, určení gradientu a Hessovy matice funkce 2 proměnných)
10. Extrémy funkce dvou proměnných (výpočet stacionárních bodů a určení jejich charakteru – lokální extrém, určení absolutní ch a vázaných extrémů – Lagrangeova metoda)
11. Matematická logika (práce s výroky a operace s nimi, zákony a pravidla)
12. Relace (určení vlastností relací mezi množinami a na množině)
13. Grafy (klasifikace grafů, určení nejkratší cesty v ohodnoceném (orientovaném) grafu)