Course detail

Mathematics I

FSI-1M-KAcad. year: 2025/2026

Basic concepts of the set theory and mathematical logic.
Linear algebra: matrices, determinants, systems of linear equations.
Vector calculus and analytic geometry.
Differential calculus of functions of one variable: basic elementary functions, limits, derivative and its applications.
Integral calculus of functions of one variable: primitive function, proper integral and its applications.

Language of instruction

Czech

Number of ECTS credits

9

Mode of study

Not applicable.

Entry knowledge

Students are expected to have basic knowledge of secondary school mathematics.

Rules for evaluation and completion of the course

COURSE-UNIT CREDIT REQUIREMENTS: The course includes seminars and exercises in the computer lab. There are two written tests within the seminars. Students may achieve max 12 points in each of these two tests, i.e. 24 points altogether. The course-unit credit is conditional on obtaining at least 6 points in each written test. If the minimum number of points is not achieved, students may repeat the test during the first two weeks of the examination period.

FORM OF EXAMINATIONS:
The exam has a written part (at most 75 points) and an oral part (at most 25 points)

WRITTEN PART OF EXAMINATION (at most 75 points)
In a 120-minute written test, students have to solve the following four problems:
Problem 1: Functions and their properties: domains, graphs (at most 10 points)
Problem 2: In linear algebra, analytic geometry (at most 20 points)
Problem 3: In differential calculus (at most 20 points)
Problem 4: In integral calculus (at most 25 points)
The above problems can also contain a theoretical question.

ORAL PART OF EXAMINATION (max 25 points)
• Discussion based on the written test: students have to explain how they solved each problem. Should the student fail to explain it sufficiently, the test results will not be accepted and will be classified by 0 points.
• Possible theoretic question.
• Possible simple problem to be solved straight away.
• The results achieved in the written tests in seminars may be taken into account within the oral examination.



FINAL CLASSIFICATION:
0-49 points: F
50-59 points: E
60-69 points: D
70-79 points: C
80-89 points: B
90-100 points: A



Attendance at lectures is recommended, attendance at seminars is required. The lessons are planned on the basis of a weekly schedule. The way of compensation for an absence is fully at the discretion of the teacher.

Aims

The course aims to acquaint the students with the basics of linear algebra, vector calculus, analytic geometry and differential and integral calculus of functions of one variable. This will enable them attend engineering courses and deal with engineering problems. Another goal of the course is to develop the students' logical thinking.
Students will be made familiar with linear algebra, analytic geometry and differential and integral calculus of functions of one variable. They will be able to solve systems of linear equations and apply the methods of linear algebra and differential and integral calculus when dealing with engineering tasks. After completing the course students will be prepared for further study of technical disciplines.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

FRANCŮ, Jan. Matematika I. Učební texty vysokých škol (Vysoké učení technické v Brně). Brno: Akademické nakladatelství CERM, 2023. ISBN 978-80-214-6174-1 (CS)
Howard, A.A.: Elementary Linear Algebra, Wiley 2002
Rektorys K. a spol.: Přehled užité matematiky I,II (SNTL, 1988)
Satunino, L.S., Hille, E., Etgen, J.G.: Calculus: One and Several Variables, Wiley 2002
Sneall D.B., Hosack J.M.: Calculus, An Integrated Approach
Thomas G. B.: Calculus (Addison Wesley, 2003)
Thomas G.B., Finney R.L.: Calculus and Analytic Geometry (7th edition)

Recommended reading

Děmidovič B. P.: Sbírka úloh a cvičení z matematické analýzy
Eliaš J., Horváth J., Kajan J.: Zbierka úloh z vyššej matematiky I, II, III, IV (Alfa Bratislava, 1985) (CS)
Mezník I. - Karásek J. - Miklíček J.: Matematika I pro strojní fakulty (SNTL 1992)
Nedoma J.: Matematika I. Část třetí, Integrální počet funkcí jedné proměnné (skriptum VUT)
Nedoma J.: Matematika I. Část druhá. Diferenciální a integrální počet funkcí jedné proměnné (skriptum VUT)
Nedoma J.: Matematika I., Část první. Algebra a geometrie (skriptum VUT)
Rektorys K. a spol.: Přehled užité matematiky I,II (SNTL, 1988)

Classification of course in study plans

  • Programme B-STR-K Bachelor's

    specialization STG , 1 year of study, winter semester, compulsory
    specialization AIŘ , 1 year of study, winter semester, compulsory
    specialization SSZ , 1 year of study, winter semester, compulsory

Type of course unit

 

Guided consultation in combined form of studies

35 hod., compulsory

Teacher / Lecturer

Syllabus

Week 1: Basics of mathematical logic and set operations, matrices and determinants (transposing, adding, and multiplying matrices, common matrix types).
Week 2: Matrices and determinants (determinants and their properties, regular and singular matrices, inverse to a matrix, calculating the inverse to a matrix using determinants), systems of linear algebraic equations (Cramer's rule, Gauss elimination method).
Week 3: More about systems of linear algebraic equations (Frobenius theorem, calculating the inverse to a matrix using the elimination method), vector calculus (operations with vectors, scalar (dot) product, vector (cross) product, scalar triple (box) product).
Week 4: Analytic geometry in 3D (problems involving straight lines and planes), the notion of a function (domain and range, bounded functions, even and odd functions, periodic functions, monotonous functions, composite functions, one-to-one functions, inverse functions).
Week 5: Basic elementary functions (exponential, logarithm, general power, trigonometric functions and cyclometric (inverse to trigonometric functions), polynomials (root of a polynomial, the fundamental theorem of algebra, multiplicity of a root, product breakdown of a polynomial), introducing the notion of a rational function.
Week 6: Sequences and their limits, limit of a function, continuous functions.
Week 7: Derivative of a function (basic problem of differential calculus, notion of derivative, calculating derivatives, geometric applications of derivatives), calculating the limit of a function using L' Hospital rule.
Week 8: Monotonous functions, maxima and minima of functions, points of inflection, convex and concave functions, asymptotes, sketching the graph of a function.
Week 9: Differential of a function, Taylor polynomial, parametric and polar definitions of curves and functions (parametric definition of a derivative, transforming parametric definitions into polar ones and vice versa).
Week 10: Primitive function (antiderivative) (definition, properties and basic formulas), integrating by parts, method of substitution.
Week 11: Integrating rational functions (no complex roots in the denominator), calculating a primitive function by the method of substitution in some of the elementary functions.
Week 12: Riemann integral (basic problem of integral calculus, definition and properties of the Riemann integral), calculating the Riemann integral (Newton' s formula).
Week 13: Applications of the definite integral (surface area of a plane figure, length of a curve, volume and lateral surface area of a rotational body), improper integral.

Guided consultation

69 hod., optionally

Teacher / Lecturer

Syllabus

The first week will be devoted to revision of knowledge gained at secondary school. Following weeks: seminars related to the lectures given in the previous week.